2 research outputs found

    Dark Stars: A New Study of the FIrst Stars in the Universe

    Full text link
    We have proposed that the first phase of stellar evolution in the history of the Universe may be Dark Stars (DS), powered by dark matter heating rather than by nuclear fusion. Weakly Interacting Massive Particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a Dark Star, powered by dark matter annihilation as long as there is dark matter fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (∼106L⊙\sim 10^6 L_\odot) and cool (Tsurf<10,000T_{surf} < 10,000K) during the DS phase, and grow to be very massive (500-1000 times as massive as the Sun). These results differ markedly from the standard picture in the absence of DM heating, in which the maximum mass is about 140M⊙M_\odot and the temperatures are much hotter (Tsurf>50,000T_{surf} > 50,000K); hence DS should be observationally distinct from standard Pop III stars. Once the dark matter fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.Comment: article to be published in special issue on Dark Matter and Particle Physics in New Journal of Physic

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres
    corecore