1 research outputs found
Can chaotic quantum energy levels statistics be characterized using information geometry and inference methods?
In this paper, we review our novel information geometrodynamical approach to
chaos (IGAC) on curved statistical manifolds and we emphasize the usefulness of
our information-geometrodynamical entropy (IGE) as an indicator of chaoticity
in a simple application. Furthermore, knowing that integrable and chaotic
quantum antiferromagnetic Ising chains are characterized by asymptotic
logarithmic and linear growths of their operator space entanglement entropies,
respectively, we apply our IGAC to present an alternative characterization of
such systems. Remarkably, we show that in the former case the IGE exhibits
asymptotic logarithmic growth while in the latter case the IGE exhibits
asymptotic linear growth. At this stage of its development, IGAC remains an
ambitious unifying information-geometric theoretical construct for the study of
chaotic dynamics with several unsolved problems. However, based on our recent
findings, we believe it could provide an interesting, innovative and
potentially powerful way to study and understand the very important and
challenging problems of classical and quantum chaos.Comment: 21 page