63 research outputs found

    Alignment and Aperture Scan at the Fermilab Booster

    Full text link
    The Fermilab booster has an intensity upgrade plan called the Proton Improvement plan (PIP). The flux throughput goal is 2E17 protons/hour, which is almost double the current operation at 1.1E17 protons/hour. The beam loss in the machine is going to be the source of issues. The booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector. Several percent of the beam is lost within 3 msec after the injection. The aperture at injection energy was measured and compared with the survey data. The magnets are going to be realigned in March 2012 in order to increase the aperture. The beam studies, analysis of the scan and alignment data, and the result of the magnet moves will be discussed in this paper.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    TRIM50 regulates Beclin 1 proautophagic activity

    Get PDF
    Autophagy is a catabolic process needed for maintaining cell viability and homeostasis in response to numerous stress conditions. Emerging evidence indicates that the ubiquitin system has a major role in this process. TRIMs, an E3 ligase protein family, contribute to selective autophagy acting as receptors and regulators of the autophagy proteins recognizing endogenous or exogenous targets through intermediary autophagic tags, such as ubiquitin. Here we report that TRIM50 fosters the initiation phase of starvation-induced autophagy and associates with Beclin1, a central component of autophagy initiation complex. We show that TRIM50, via the RING domain, ubiquitinates Beclin 1 in a K63-dependent manner enhancing its binding with ULK1 and autophagy activity. Finally, we found that the Lys-372 residue of TRIM50, critical for its own acetylation, is necessary for its E3 ligase activity that governs Beclin1 ubiquitination. Our study expands the roles of TRIMs in regulating selective autophagy, revealing an acetylation-ubiquitination dependent control for autophagy modulation. © 2018 Elsevier B.V

    System overview for the multi-element corrector magnets and controls for the Fermilab Booster

    Get PDF
    To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and will be installed in 48 locations in the Booster accelerator. Each of these 288 corrector magnets will be individually powered. Each of the magnets will be individually controlled using operator programmed current ramps designed specifically for each type of Booster acceleration cycle. This paper provides an overview of the corrector magnet installation in the accelerator enclosure, power and sensor interconnections, specifications for the switch-mode power supplies, rack and equipment layouts, controls and interlock electronics, and the features of the operator interface for programming the current ramps and adjusting the timing of the system triggers
    corecore