277 research outputs found
Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles
Low-frequency Raman scattering experiments have been performed on thin films
consisting of nickel-silver composite nanoparticles embedded in alumina matrix.
It is observed that the Raman scattering by the quadrupolar modes, strongly
enhanced when the light excitation is resonant with the surface dipolar
excitation, is mainly governed by the silver electron contribution to the
plasmon excitation. The Raman results are in agreement with a core-shell
structure of the nanoparticles, the silver shell being loosely bonded to the
nickel core.Comment: 3 figures. To be published in Phys. Rev.
Molecular dynamics study of the fragmentation of silicon doped fullerenes
Tight binding molecular dynamics simulations, with a non orthogonal basis
set, are performed to study the fragmentation of carbon fullerenes doped with
up to six silicon atoms. Both substitutional and adsorbed cases are considered.
The fragmentation process is simulated starting from the equilibrium
configuration in each case and imposing a high initial temperature to the
atoms. Kinetic energy quickly converts into potential energy, so that the
system oscillates for some picoseconds and eventually breaks up. The most
probable first event for substituted fullerenes is the ejection of a C2
molecule, another very frequent event being that one Si atom goes to an
adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they
have four or more atoms, while the smaller ones tend to dissociate and
sometimes interchange positions with the C atoms. These results are compared
with experimental information from mass abundance spectroscopy and the products
of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in
Physical Review
Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates
The presence of oligomeric aggregates, which is often observed during the
process of amyloid formation, has recently attracted much attention since it
has been associated with neurodegenerative conditions such as Alzheimer's and
Parkinson's diseases. We provide a description of a sequence-indepedent
mechanism by which polypeptide chains aggregate by forming metastable
oligomeric intermediate states prior to converting into fibrillar structures.
Our results illustrate how the formation of ordered arrays of hydrogen bonds
drives the formation of beta-sheets within the disordered oligomeric aggregates
that form early under the effect of hydrophobic forces. Initially individual
beta-sheets form with random orientations, which subsequently tend to align
into protofilaments as their lengths increases. Our results suggest that
amyloid aggregation represents an example of the Ostwald step rule of first
order phase transitions by showing that ordered cross-beta structures emerge
preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure
Interface magnetic anisotropy in cobalt clusters embedded in a platinum or niobium matrix
A low concentration of cobalt clusters with a fcc structure and containing
almost one thousand atoms are embedded in two different metallic matrices:
platinum and niobium. Samples have been prepared using a co-deposition
technique. Cobalt clusters preformed in the gas phase and matrix atoms are
simultaneously deposited on a silicon substrate under Ultra High Vacuum
conditions. This original technique allows to prepare nanostructured systems
from miscible elements such as Co/Pt and Co/Nb in which clusters keep a pure
cobalt core surrounded with an alloyed interface. Magnetic measurements
performed using a Vibrating Sample Magnetometer (VSM) reveal large differences
in the magnetic properties of cobalt clusters in Pt and Nb pointing out the key
role of cluster/matrix interfaces.Comment: 7 pages (LaTeX), 12 PostScript figures, 1 PostScript tabl
Supershells in Metal Clusters: Self-Consistent Calculations and their Semiclassical Interpretation
To understand the electronic shell- and supershell-structure in large metal
clusters we have performed self-consistent calculations in the homogeneous,
spherical jellium model for a variety of different materials. A scaling
analysis of the results reveals a surprisingly simple dependence of the
supershells on the jellium density. It is shown how this can be understood in
the framework of a periodic-orbit-expansion by analytically extending the
well-known semiclassical treatment of a spherical cavity to more realistic
potentials.Comment: 4 pages, revtex, 3 eps figures included, for additional information
see http://radix2.mpi-stuttgart.mpg.de/koch/Diss
Slow dynamics of a confined supercooled binary mixture II: Q space analysis
We report the analysis in the wavevector space of the density correlator of a
Lennard Jones binary mixture confined in a disordered matrix of soft spheres
upon supercooling. In spite of the strong confining medium the behavior of the
mixture is consistent with the Mode Coupling Theory predictions for bulk
supercooled liquids. The relaxation times extracted from the fit of the density
correlator to the stretched exponential function follow a unique power law
behavior as a function of wavevector and temperature. The von Schweidler
scaling properties are valid for an extended wavevector range around the peak
of the structure factor. The parameters extracted in the present work are
compared with the bulk values obtained in literature.Comment: 8 pages with 8 figures. RevTeX. Accepted for publication in Phys.
Rev.
Observation of Supershell Structure in Alkali Metal Nanowires
Nanowires are formed by indenting and subsequently retracting two pieces of
sodium metal. Their cross-section gradually reduces upon retraction and the
diameters can be obtained from the conductance. In previous work we have
demonstrated that when one constructs a histogram of diameters from large
numbers of indentation-retraction cycles, such histograms show a periodic
pattern of stable nanowire diameters due to shell structure in the conductance
modes. Here, we report the observation of a modulation of this periodic
pattern, in agreement with predictions of a supershell structure.Comment: Phys. Rev. Lett., in prin
Magnetic Anisotropy of a Single Cobalt Nanoparticle
Using a new microSQUID set-up, we investigate magnetic anisotropy in a single
1000-atoms cobalt cluster. This system opens new fields in the characterization
and the understanding of the origin of magnetic anisotropy in such
nanoparticles. For this purpose, we report three-dimensional switching field
measurements performed on a 3 nm cobalt cluster embedded in a niobium matrix.
We are able to separate the different magnetic anisotropy contributions and
evidence the dominating role of the cluster surface.Comment: 4 pages, 8 figure
Structure and Magnetism of well-defined cobalt nanoparticles embedded in a niobium matrix
Our recent studies on Co-clusters embedded in various matrices reveal that
the co-deposition technique (simultaneous deposition of two beams : one for the
pre-formed clusters and one for the matrix atoms) is a powerful tool to prepare
magnetic nanostructures with any couple of materials even though they are
miscible. We study, both sharply related, structure and magnetism of the Co/Nb
system. Because such a heterogeneous system needs to be described at different
scales, we used microscopic and macroscopic techniques but also local selective
absorption ones. We conclude that our clusters are 3 nm diameter f.c.c
truncated octahedrons with a pure cobalt core and a solid solution between Co
and Nb located at the interface which could be responsible for the magnetically
inactive monolayers we found. The use of a very diluted Co/Nb film, further
lithographed, would allow us to achieve a pattern of microsquid devices in view
to study the magnetic dynamics of a single-Co cluster.Comment: 7 TeX pages, 9 Postscript figures, detailed heading adde
Periodic orbit theory for realistic cluster potentials: The leptodermous expansion
The formation of supershells observed in large metal clusters can be
qualitatively understood from a periodic-orbit-expansion for a spherical
cavity. To describe the changes in the supershell structure for different
materials, one has, however, to go beyond that simple model. We show how
periodic-orbit-expansions for realistic cluster potentials can be derived by
expanding only the classical radial action around the limiting case of a
spherical potential well. We give analytical results for the leptodermous
expansion of Woods-Saxon potentials and show that it describes the shift of the
supershells as the surface of a cluster potential gets softer. As a byproduct
of our work, we find that the electronic shell and supershell structure is not
affected by a lattice contraction, which might be present in small clusters.Comment: 15 pages RevTex, 11 eps figures, additional information at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/users/koch/Diss
- …