277 research outputs found

    Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles

    Full text link
    Low-frequency Raman scattering experiments have been performed on thin films consisting of nickel-silver composite nanoparticles embedded in alumina matrix. It is observed that the Raman scattering by the quadrupolar modes, strongly enhanced when the light excitation is resonant with the surface dipolar excitation, is mainly governed by the silver electron contribution to the plasmon excitation. The Raman results are in agreement with a core-shell structure of the nanoparticles, the silver shell being loosely bonded to the nickel core.Comment: 3 figures. To be published in Phys. Rev.

    Molecular dynamics study of the fragmentation of silicon doped fullerenes

    Full text link
    Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in Physical Review

    Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates

    Get PDF
    The presence of oligomeric aggregates, which is often observed during the process of amyloid formation, has recently attracted much attention since it has been associated with neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. We provide a description of a sequence-indepedent mechanism by which polypeptide chains aggregate by forming metastable oligomeric intermediate states prior to converting into fibrillar structures. Our results illustrate how the formation of ordered arrays of hydrogen bonds drives the formation of beta-sheets within the disordered oligomeric aggregates that form early under the effect of hydrophobic forces. Initially individual beta-sheets form with random orientations, which subsequently tend to align into protofilaments as their lengths increases. Our results suggest that amyloid aggregation represents an example of the Ostwald step rule of first order phase transitions by showing that ordered cross-beta structures emerge preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure

    Interface magnetic anisotropy in cobalt clusters embedded in a platinum or niobium matrix

    Full text link
    A low concentration of cobalt clusters with a fcc structure and containing almost one thousand atoms are embedded in two different metallic matrices: platinum and niobium. Samples have been prepared using a co-deposition technique. Cobalt clusters preformed in the gas phase and matrix atoms are simultaneously deposited on a silicon substrate under Ultra High Vacuum conditions. This original technique allows to prepare nanostructured systems from miscible elements such as Co/Pt and Co/Nb in which clusters keep a pure cobalt core surrounded with an alloyed interface. Magnetic measurements performed using a Vibrating Sample Magnetometer (VSM) reveal large differences in the magnetic properties of cobalt clusters in Pt and Nb pointing out the key role of cluster/matrix interfaces.Comment: 7 pages (LaTeX), 12 PostScript figures, 1 PostScript tabl

    Supershells in Metal Clusters: Self-Consistent Calculations and their Semiclassical Interpretation

    Full text link
    To understand the electronic shell- and supershell-structure in large metal clusters we have performed self-consistent calculations in the homogeneous, spherical jellium model for a variety of different materials. A scaling analysis of the results reveals a surprisingly simple dependence of the supershells on the jellium density. It is shown how this can be understood in the framework of a periodic-orbit-expansion by analytically extending the well-known semiclassical treatment of a spherical cavity to more realistic potentials.Comment: 4 pages, revtex, 3 eps figures included, for additional information see http://radix2.mpi-stuttgart.mpg.de/koch/Diss

    Slow dynamics of a confined supercooled binary mixture II: Q space analysis

    Full text link
    We report the analysis in the wavevector space of the density correlator of a Lennard Jones binary mixture confined in a disordered matrix of soft spheres upon supercooling. In spite of the strong confining medium the behavior of the mixture is consistent with the Mode Coupling Theory predictions for bulk supercooled liquids. The relaxation times extracted from the fit of the density correlator to the stretched exponential function follow a unique power law behavior as a function of wavevector and temperature. The von Schweidler scaling properties are valid for an extended wavevector range around the peak of the structure factor. The parameters extracted in the present work are compared with the bulk values obtained in literature.Comment: 8 pages with 8 figures. RevTeX. Accepted for publication in Phys. Rev.

    Observation of Supershell Structure in Alkali Metal Nanowires

    Get PDF
    Nanowires are formed by indenting and subsequently retracting two pieces of sodium metal. Their cross-section gradually reduces upon retraction and the diameters can be obtained from the conductance. In previous work we have demonstrated that when one constructs a histogram of diameters from large numbers of indentation-retraction cycles, such histograms show a periodic pattern of stable nanowire diameters due to shell structure in the conductance modes. Here, we report the observation of a modulation of this periodic pattern, in agreement with predictions of a supershell structure.Comment: Phys. Rev. Lett., in prin

    Magnetic Anisotropy of a Single Cobalt Nanoparticle

    Full text link
    Using a new microSQUID set-up, we investigate magnetic anisotropy in a single 1000-atoms cobalt cluster. This system opens new fields in the characterization and the understanding of the origin of magnetic anisotropy in such nanoparticles. For this purpose, we report three-dimensional switching field measurements performed on a 3 nm cobalt cluster embedded in a niobium matrix. We are able to separate the different magnetic anisotropy contributions and evidence the dominating role of the cluster surface.Comment: 4 pages, 8 figure

    Structure and Magnetism of well-defined cobalt nanoparticles embedded in a niobium matrix

    Full text link
    Our recent studies on Co-clusters embedded in various matrices reveal that the co-deposition technique (simultaneous deposition of two beams : one for the pre-formed clusters and one for the matrix atoms) is a powerful tool to prepare magnetic nanostructures with any couple of materials even though they are miscible. We study, both sharply related, structure and magnetism of the Co/Nb system. Because such a heterogeneous system needs to be described at different scales, we used microscopic and macroscopic techniques but also local selective absorption ones. We conclude that our clusters are 3 nm diameter f.c.c truncated octahedrons with a pure cobalt core and a solid solution between Co and Nb located at the interface which could be responsible for the magnetically inactive monolayers we found. The use of a very diluted Co/Nb film, further lithographed, would allow us to achieve a pattern of microsquid devices in view to study the magnetic dynamics of a single-Co cluster.Comment: 7 TeX pages, 9 Postscript figures, detailed heading adde

    Periodic orbit theory for realistic cluster potentials: The leptodermous expansion

    Full text link
    The formation of supershells observed in large metal clusters can be qualitatively understood from a periodic-orbit-expansion for a spherical cavity. To describe the changes in the supershell structure for different materials, one has, however, to go beyond that simple model. We show how periodic-orbit-expansions for realistic cluster potentials can be derived by expanding only the classical radial action around the limiting case of a spherical potential well. We give analytical results for the leptodermous expansion of Woods-Saxon potentials and show that it describes the shift of the supershells as the surface of a cluster potential gets softer. As a byproduct of our work, we find that the electronic shell and supershell structure is not affected by a lattice contraction, which might be present in small clusters.Comment: 15 pages RevTex, 11 eps figures, additional information at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/users/koch/Diss
    • …
    corecore