131 research outputs found

    Production Systems to Integrate Livestock Grazing and Grain Production in Southern Brazil and Midwestern USA

    Get PDF
    Agriculture in the USA and Brazil has undergone similar and dramatic changes in the past 20 years. In both countries, production systems have become increasingly specialized. Large farms are characterized by single enterprises, simple crop rotations, and livestock production is segregated from grain production. The lack of diversification and high production costs expose producers to risk from economic swings of single enterprises and greater reliance on pesticides and synthetic fertilizers to maintain profitability, along with greater risk of soil erosion from continuous row crop production. Scientists in southern Brazil and Ohio are collaborating to develop no-tillage systems that integrate livestock grazing with cash grain production. The goal is diversified production systems that are profitable as well as biologically and environmentally sound

    Oat growth under different nitrogen doses in an eucalyptus alley cropping system in subtropical Brazil.

    Get PDF
    Foi realizada uma análise de crescimento para verificar como a aveia (Avena sativa L. cv. IPR 126) cultivada para grãos responde a um sistema agroflorestal (SAF) com eucaliptos (Eucalyptus dunnii Maiden) no subtrópico brasileiro. A hipótese deste trabalho é que a resposta de crescimento da aveia não é modificada pelo nitrogênio em distâncias relativas a faixas de eucaliptos. O objetivo deste estudo foi determinar como o crescimento da aveia é influenciado por níveis de nitrogênio (12 e 80 kg ha-1 de N) em cinco posições equidistantes entre faixas de linhas duplas de eucaliptos [20 m (4 m x 3 m)] em SAF e em agricultura tradicional de plantio direto. O experimento foi em faixas no delineamento de blocos ao acaso com quatro repetições. Foram avaliadas as taxas de crescimento relativo e de assimilação líquida, fração de massa foliar e taxa de enchimento relativo da panícula. O nitrogênio alterou a resposta do crescimento diferentemente em posições relativas às faixas de árvores, portanto diferentes doses de nitrogênio devem ser utilizadas nestas posições para aumentar o crescimento da aveia

    Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment

    Get PDF
    The potential use of cellulose nanofibers (CNFs) as a reinforcing agent in banana starch-based nanocomposite films was investigated. CNFs were isolated from banana peel (Musa paradisiaca) by enzymatic hydrolysis. Banana starch-based nanocomposite films were prepared with CNFs using the casting method. CNFs effect on cell viability and on nanocomposite films properties was investigated. The cytotoxicity of CNFs was assessed on Caco-2 cell line. CNFs were not cytotoxic at 502000??g/mL. However, CNFs above 2000??g/mL significantly decreased cell viability. Topography analysis showed that the incorporation of CNFs modified the film structure. The nanocomposites exhibited a complex structure due to strong interactions between CNFs and starch matrix, promoting a remarkable improvement on mechanical and water barrier properties, opacity and UV light barrier compared to the control film. CNFs can offer a great potential as reinforcing material for starch-based nanocomposite films, producing a value-added food packaging from a waste material.The authors would like to acknowledge the financial support provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (140274/2014-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (2952/2011) and CAPES/FCT número349/13 for Ph.D internship program. Joana T. Martins acknowledges the Foundation for Science and Technology (FCT) for her fellowship (SFRH/BPD/89992/2012). This study was supported by FCT under the scope of the strategic funding of UID/BIO/ 04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors would also like to acknowledge the Brazilian Nanotechnology National Laboratory (LNNano) for allocation of the TEM, AFM and AFM-Nano IR apparatus.info:eu-repo/semantics/publishedVersio

    Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation

    Full text link
    [EN] Cassava starch-chitosan films were obtained by melt bending and compression molding, using glycerol and polyethylene glycol as plasticizers. Both the starch/chitosan and the polymer/plasticizer ratios were varied in order to analyze their effect on the physical properties of the films. Additionally, the antimicrobial activity of 70:30 polymer:plasticizer films was tested in cold-stored pork meat slices as affected by chitosan content. All film components were thermally stable up to 200 A degrees C, which guaranteed their thermostability during film processing. Starch and chitosan had limited miscibility by melt blending, which resulted in heterogeneous film microstructure. Polyethylene glycol partially crystallized in the films, to a greater extent as the chitosan ratio increased, which limited its plasticizing effect. The films with the highest plasticizer ratio were more permeable to water vapor, less rigid, and less resistant to break. The variation in the chitosan content did not have a significant effect on water vapor permeability. As the chitosan proportion increased, the films became less stretchable, more rigid, and more resistant to break, with a more saturated yellowish color. The incorporation of the highest amount of chitosan in the films led to the reduction in coliforms and total aerobic counts of cold-stored pork meat slices, thus extending their shelf-life.The authors acknowledge the financial support provided by the Spanish Ministerio de Economia y Competividad (Projects AGL2013-42989-R and AGL2016-76699-R). Author Cristina Valencia-Sullca thanks the Peruvian Grant National Program (PRONABEC Grant).Valencia-Sullca, CE.; Atarés Huerta, LM.; Vargas, M.; Chiralt, A. (2018). Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation. Food and Bioprocess Technology. 11(7):1339-1349. https://doi.org/10.1007/s11947-018-2094-5S13391349117Alves, V. D., Mali, S., Beleia, A., & Grossmann, M. V. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941–946.ASTM (1995). Standard test methods for water vapour transmission of materials. In: Standards designations: E96-95. Annual book of ASTM standards (pp. 406-413). Philadelphia, PA: American Society for Testing and Materials.ASTM (1999). Standard test method for specular gloss. In: Designation (D523). Annual book of ASTM standards, Vol. 06.01. Philadelphia, PA: American Society for Testing and Materials.ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. In: Standard D882 annual book of American standard testing methods. Philadelphia, PA: American Society for Testing and Materials.Atarés, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678–687.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303–312.Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463–470.Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Science and Technology, 41(9), 1633–1641.Cano, A., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2014). Effect of amylose: amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111(0), 543–555.Carvalho, A. J. F. (2008). Starch: Major sources, properties and applications as thermoplastic materials. In M. N. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier.Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88(2), 159–168.Commission Regulation, 2005 (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. In Official Journal of the European Union pp 338/1–338/26.Da Róz, A., Carvalho, A., Gandini, A., & Curvelo, A. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417–424.Dang, K., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575–581.Dou, B., Dupont, V., Williams, P. T., Chen, H., & Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613–2620.Fang, J., Fawler, P., Eserig, C., González, R., Costa, J., & Chamudis, L. (2005). Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohydrate Polymers, 60(1), 39–42.Hutchings, J. B. (1999). Food color and appearance (2nd ed.). Gaithersburg, Maryland, USA: Aspen Publishers, Inc..Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012a). Edible and biodegradable starch films: A review. Food Bioprocessing Technology, 5(6), 2058–2076.Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012b). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310.López, O., Garcia, A., Villar, M., Gentili, A., Rodriguez, M., & Albertengo, L. (2014). Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Science and Technology, 57(106), 106–1515.Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritsky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453–460.Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R. A., Marques, C. P., Marconcini, J. M., Mattoso, L. H. C., Medeiros, E. S., & Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458.Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155–165.Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282–290.Pelissari, F., Grossmann, M., Yamashita, F., & Pineda, E. (2009). Antimicrobial, mechanical and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499–7504.Pelissari, F. M., Yamashita, F., García, M. A., Martino, M. N., Zaritzky, N. E., & Grossmann, M. V. E. (2012). Constrained mixture design applied to the development of cassava starch-chitosan blown films. Journal of Food Engineering, 108(2), 262–267.Song, R., Xue, R., He, L. H., Liu, Y., & Xiao, Q. L. (2008). The structure and properties of chitosan/polyethylene glycol/silica ternary hybrid organic-inorganic films. Chinese Journal of Polymer Science, 26(05), 621–630.v.Su, J. F., Huang, Z., Yuan, X. Y., Wang, X. Y., & Lim, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1), 145–153.Thunwall, M., Boldizar, A., & Rigdahl, M. (2006). Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules, 7(3), 981–986.Tomé, L., Fernandes, S., Sadocco, P., Causio, J., Silvertre, A., Neto, P., & Freire, C. (2012). Antibacterial thermoplastic starch- chitosan based materials prepared by melt-mixing. BioResources, 7(3), 3398–3409.Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids, 19(1), 53–61.Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan–starch composite film: Preparation and characterization. Industrial Crops and Products, 21(2), 185–192.Yang, L., & Paulson, A. T. (2000). Mechanical and water vapour barrier properties of edible gellan. Food Research International, 33(7), 563–570

    An Interdisciplinary Weight Loss Program Improves Body Composition and Metabolic Profile in Adolescents With Obesity: Associations With the Dietary Inflammatory Index

    Get PDF
    Background and Aims: The prevalence of overweight and obesity consitutes a global epidemic and it is growing around the world. Food and nutrition are essential requirements for promoting health and protecting against non-communicable chronic diseases, such as obesity and cardiovascular disease. Specific dietary components may modulate inflammation and oxidative stress in obese individuals. The Dietary Inflammatory Index (DII®) was developed to characterize the anti- and pro-inflammatory effects of individuals\u27 diet. Few studies have investigated the role of diet-associated inflammation in adolescents with obesity. The present study aims to investigate the effects of an interdisciplinary weight loss therapy on DII scores and cardiometabolic risk in obese adolescents and possibles correlations. Methods: A total of 45 volunteers (14–19 years old) were recruited and enrolled for long-term interdisciplinary therapy including clinical, nutritional, psychological counseling, and exercise training. Adolescents had access to videos about health education weekly. Body composition and inflammatory and serum profiles were evaluated at baseline and after intervention. The food intake was obtained by 24-h food recall. Data was used to calculate energy-adjusted DII (E-DII) scores. Negative scores indicate an anti-inflammatory diet and positive scores indicates a pro-inflammatory diet. The sample was divided according to whether individuals increased or decreased E-DII scores after therapy. Results: After therapy the body mass index (BMI), body weight, body fat, abdominal, waist, neck, and hip circumferences decreased significantly. The mean of high-density lipoprotein cholesterol (HDL-c) increased after the therapy. There was found an improvement of inflammatory and cardiometabolic parameters. In exploratory analyses, this occurred mainly when the EDII improved. Conclusion: Long-term interdisciplinary therapy combined with a health education website improved inflammatory serum markers in obese adolescents. Reduction in DII scores was associated with reduction of cardiometabolic parameters, suggesting that an anti-inflammatory diet may be an effective strategy to prevent and treat obesity and related comorbidities. Trial: http://www.ensaiosclinicos.gov.br/rg/RBR-6txv3v/, Register Number: RBR-6txv3
    corecore