2 research outputs found

    Cost analyses based on scientific design for salinity water membrane technology systems can be installed in Turkey

    Get PDF
    Bu çalışmada Türkiye’de membran teknolojilerinin uygulanabilirliğini inceleyecek nüfusu 500 - 2000000 arası 20 farklı büyüklükte yerleşim bölgesinin içme ve kullanma suyu ihtiyacını karşılayacak sistemlerin tasarım esasları belirlenerek deniz ve nehir sularının kullanılması durumuna göre yatırım ve işletme maliyetleri hesaplanmıştır. Nehir suyu membran teknolojisi sistemlerinin yatırım ve işletme maliyetlerinin deniz suyu arıtan sistemlere göre %50-55 daha düşük olduğu tespit edilmiştir. Nüfusu 500 olan bir yerleşim bölgesi için kurulacak deniz suyu membran teknolojisi sisteminin toplam yatırım maliyeti 2.24 €/m3 iken, nüfusu 15000 olan için 0.60 €/m3 değerine düşmektedir. Diğer yönden nüfusu 500 olan bir yerleşim bölgesi için kurulacak nehir suyu membran teknolojisi sisteminin toplam yatırım maliyeti 1.26 €/m3 iken, nüfusu 15000 olan için 0.26 €/m3 değerine düşmektedir. Türkiye’de içme ve kullanma suyu üretiminde kurulacak membran teknolojisi sistemleri için yatırım stratejilerinin belirlenmesi durumunda nüfusu 15000’den büyük; tesis çıkış kapasite değeri olarak 2000 m3/gün’den yüksek tesislerin kurulması önerilmiştir. Yapılan hesaplamalarda membran teknolojisi sistemlerinin ön arıtılma ünitelerinde ultrafiltrasyon sistemleri kurulduğunda yatırım maliyetlerinin % 10-20 daha yüksek olduğu görülmüştür. Akdeniz suyuna uygun membran teknolojisi sistemlerinde işletme maliyetlerinin yaklaşık %65-69’unu elektrik oluşturmaktadır. bu sistemlerin 20 yıl işletilmeleri boyunca; elektrik tarifesinde %20 artışta %6-9; %40 artışta %11-17; %60 artışta %16-23 bir m3 üretilen su için toplam yatırım maliyetlerinde yükselme olacağı tespit edilmiştir. Anahtar Kelimeler: Ters osmoz, ultrafiltrasyon, deniz suyu, nehir suyu, yatırım ve işletme maliyetleri.In todays world, membrane technology systems are used in a wide range of dissolved solid concentration and particle size for sea, river, well, lake waters and are even especially produced for different types of industrial wastewaters. One of the most important properties of the membrane technology is that the technology is open to continuous improvement. As a proof; the permeate water of a membrane filter today has increased three times of the permeate produced in 1980 while the production cost of the membrane is reduced to one tenth in the same period of time. This means that it is today possible to produce 30 times of the permeate produced in 1980 with the same investment cost of reverse osmosis system. In this study, the design criteria is presented for the membrane technology systems producing drinking and potable water of 20 different sized accommodation areas with populations from 500 to 2 000 000. As the designs of these processes vary too much according to the Total Dissolved Solids and particle sizes, different first investment and operation costs are calculated whether sea or river waters are used. The main parameters like equipment, construction, project, electricity and their affects on the investment costs are investigated separately for each plant. As a result of this study, both investment and operation costs are put into graphics for produced m3 water per each accommodation area with population from 500 to 2 000 000 and it is proven that the values are in accordance with the values published in the similar literature studies. Another result of this study is that the membrane technology systems producing drinking and potable water from sea waters are much higher than the membrane technology systems producing drinking and potable water from river, well, lake waters as the sea water has higher salinity. For this reason, it is suggested in this study to give priority to the membrane technology plant investments producing drinking or potable water from wells, rivers or lakes rather than sea water if both are available in the same area, as the plants operated with well, river and lake water have 60% lower investment+opera-tion costs compared to the plants operated with sea water. The first investment and operation costs per m3 of produced water of the membrane technology  systems using seawater and well waters decreases as the plant capacity increases. As a result of this study it is suggested for the central or local administrations that may be at the stage of planning their strategy regarding the membrane technology systems to make their investment plans if the population of their accommodation area is over 15 000 or the capacity equivalent is higher than 2 000 m3/day. Also in the case of ultrafilration units would be preferred instead of conventional pretreatment units in membrane technology systems, then investment costs can be higher as 10-20%. In addition, it is determined that energy costs are affecting about 65-69%. of the total operation cost. If electricity tariff is increased 20% then total investment cost increases by 6-9%; if electricity prices increases 40%, the operational cost increases by 11-17%; if electricity prices increases 60%, the operational cost increases by 16-23% in membrane technology systems producing drinking and potable water from sea water. The total investment and operation costs per m3 of produced water of the membrane technology systems using seawater and well waters decreases as the plant capacity increases; while the total investment and operational cost of a sea water membrane system of an accommodation area with a population of 500 is 2.24 ?/m3, the total investment and operational cost of a sea water membrane system of an accommodation area with a population of 15 000 is 0.60 ?/m3. While the total investment and operational cost of a river water membrane system of an accommodation area with a population of 500 is 1.26 ?/m3, the total investment and operational cost of a sea water membrane system of an accommodation area with a population of 15 ,000 is 0.26 ?/m3. Keywords: Reverse osmosis, ultrafiltration, sea water, brackish water, investment and operation costs

    Water-wastewater resources based on river basins in Turkey and urban wastewater treatment potential

    Get PDF
    Bu makalenin başlıca amacı ülkenin su ve atıksu ile ilgili konularda mevcut durumunu tanımlayarak, sürdürülebilir su ve atıksu yönetimi çabalarına katkıda bulunmaktır. Çalışmada, ülkenin çevre sorunlarının incelenmesi açısından en uygun değerlendirme boyutunu oluşturması nedeni ile su havzaları esas alınmıştır. Her bir havzanın özelliği, coğrafik yapılarına, iklim koşullarına, endüstriyel faaliyet yoğunluklarına, kıyı şeridine olan uzaklıklarına ve Büyükşehir Belediyesi sınırları içinde yer almalarına bağlı olarak birbirinden farklı bulunmuştur. Veri eksiklikleri ve/veya elde edilen bilgilerin güvenilir olmaması ile birlikte, söz konusu veri tabanlarının farklı devlet kuruluşları bünyesinde dağınık olarak bulunması, sürdürülebilir su ve atıksu yönetimini iyileştirme ve yeniden düzenleme konusundaki çalışmaları oldukça zorlaştırmıştır. Anahtar Kelimeler: Sürdürülebilir su ve atıksu yönetimi, Türkiye’nin nehir havzaları, kentsel atıksu arıtma tesisleri, su kaynakları.Sustainable wastewater management can only be promoted when the existing situation is well defined. It also necessitates the investigation of the national monitoring and control acts, as without an idea on the national water and wastewater policies it is very hard to establish a healthy and satisfactory management strategy. As a rapidly developing country, Turkey faces certain difficulties in having a well-organized and systematic database concerning especially infrastructure facilities. The major objective of this paper is to identify the prevailing situation of water and wastewater issues to promote sustainable water and wastewater management efforts in Turkey. For that purpose, a detailed data inventory followed by the evaluation of the existing urban wastewater treatment facilities was conducted. The study was solely based on the river basins of the country as basin wide approaches seem to be the most convenient scale to deal with such environmental issues. The characteristics of each basin were found to vary from each other, mainly due to the variations in geographical structure, climatic conditions, the intensity of industrial activities, proximity to the coastlines, and locations within the boundaries of Greater Municipalities. Lack of information and/or reliance on available data together with data scattered among various governmental organizations made the study of improving and re-establishing a sustainable water and wastewater management strategy for the country rather difficult.Keywords: Sustainable water and wastewater management, Turkish river basins, urban wastewater treatment plants, water resources
    corecore