323 research outputs found

    A Spinorial Formulation of the Maximum Clique Problem of a Graph

    Get PDF
    We present a new formulation of the maximum clique problem of a graph in complex space. We start observing that the adjacency matrix A of a graph can always be written in the form A = B B where B is a complex, symmetric matrix formed by vectors of zero length (null vectors) and the maximum clique problem can be transformed in a geometrical problem for these vectors. This problem, in turn, is translated in spinorial language and we show that each graph uniquely identifies a set of pure spinors, that is vectors of the endomorphism space of Clifford algebras, and the maximum clique problem is formalized in this setting so that, this much studied problem, may take advantage from recent progresses of pure spinor geometry

    Deep Constrained Dominant Sets for Person Re-Identification

    Get PDF
    In this work, we propose an end-to-end constrained clustering scheme to tackle the person re-identification (re-id) problem. Deep neural networks (DNN) have recently proven to be effective on person re-identification task. In particular, rather than leveraging solely a probe-gallery similarity, diffusing the similarities among the gallery images in an end-to-end manner has proven to be effective in yielding a robust probe-gallery affinity. However, existing methods do not apply probe image as a constraint, and are prone to noise propagation during the similarity diffusion process. To overcome this, we propose an intriguing scheme which treats person-image retrieval problem as a constrained clustering optimization problem, called deep constrained dominant sets (DCDS). Given a probe and gallery images, we re-formulate person re-id problem as finding a constrained cluster, where the probe image is taken as a constraint (seed) and each cluster corresponds to a set of images corresponding to the same person. By optimizing the constrained clustering in an end-to-end manner, we naturally leverage the contextual knowledge of a set of images corresponding to the given person-images. We further enhance the performance by integrating an auxiliary net alongside DCDS, which employs a multi-scale ResNet. To validate the effectiveness of our method we present experiments on several benchmark datasets and show that the proposed method can outperform state-of-the-art methods

    A black-Box adversarial attack for poisoning clustering

    Get PDF
    Clustering algorithms play a fundamental role as tools in decision-making and sensible automation pro-cesses. Due to the widespread use of these applications, a robustness analysis of this family of algorithms against adversarial noise has become imperative. To the best of our knowledge, however, only a few works have currently addressed this problem. In an attempt to fill this gap, in this work, we propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algo-rithms. We formulate the problem as a constrained minimization program, general in its structure and customizable by the attacker according to her capability constraints. We do not assume any information about the internal structure of the victim clustering algorithm, and we allow the attacker to query it as a service only. In the absence of any derivative information, we perform the optimization with a custom approach inspired by the Abstract Genetic Algorithm (AGA). In the experimental part, we demonstrate the sensibility of different single and ensemble clustering algorithms against our crafted adversarial samples on different scenarios. Furthermore, we perform a comparison of our algorithm with a state-of-the-art approach showing that we are able to reach or even outperform its performance. Finally, to highlight the general nature of the generated noise, we show that our attacks are transferable even against supervised algorithms such as SVMs, random forests and neural networks. (c) 2021 Elsevier Ltd. All rights reserved

    A Note on the KKT Points for the Motzkin-Straus Program

    Get PDF
    In a seminal 1965 paper, Motzkin and Straus established an elegant connection between the clique number of a graph and the global maxima of a quadratic program defined on the standard simplex. Since then, the result has been the subject of intensive research and has served as the motivation for a number of heuristics and bounds for the maximum clique problem. Most of the studies available in the literature, however, focus typically on the local/global solutions of the program, and little or no attention has been devoted so far to the study of its Karush-Kuhn-Tucker (KKT) points. In contrast, in this paper we study the properties of (a parameterized version of) the Motzkin-Straus program and show that its KKT points can provide interesting structural information and are in fact associated with certain regular sub-structures of the underlying graph

    Learning compatibility coefficients for relaxation labeling processes

    Full text link

    Ice Core Science Meets Computer Vision: Challenges and Perspectives

    Get PDF
    Polar ice cores play a central role in studies of the earth's climate system through natural archives. A pressing issue is the analysis of the oldest, highly thinned ice core sections, where the identification of paleoclimate signals is particularly challenging. For this, state-of-the-art imaging by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) has the potential to be revolutionary due to its combination of micron-scale 2D chemical information with visual features. However, the quantitative study of record preservation in chemical images raises new questions that call for the expertise of the computer vision community. To illustrate this new inter-disciplinary frontier, we describe a selected set of key questions. One critical task is to assess the paleoclimate significance of single line profiles along the main core axis, which we show is a scale-dependent problem for which advanced image analysis methods are critical. Another important issue is the evaluation of post-depositional layer changes, for which the chemical images provide rich information. Accordingly, the time is ripe to begin an intensified exchange among the two scientific communities of computer vision and ice core science. The collaborative building of a new framework for investigating high-resolution chemical images with automated image analysis techniques will also benefit the already wide-spread application of LA-ICP-MS chemical imaging in the geosciences.Comment: 9 pages, 2 figures, submitted to Frontiers in Computer Science, section Computer Visio

    Polynomial-time metrics for attributed trees

    Get PDF
    We address the problem of comparing attributed trees and propose four novel distance measures centered around the notion of a maximal similarity common subtree. The proposed measures are general and defined on trees endowed with either symbolic or continuous-valued attributes and can be applied to rooted as well as unrooted trees. We prove that our measures satisfythe metric constraints and provide a polynomial-time algorithm to compute them. This is a remarkable and attractive property, since the computation of traditional edit-distance-based metrics is, in general, NP-complete, at least in the unordered case. We experimentally validate the usefulness of our metrics on shape matching tasks and compare them with (an approximation of) edit-distance

    Transductive Label Augmentation for Improved Deep Network Learning

    Get PDF
    A major impediment to the application of deep learning to real-world problems is the scarcity of labeled data. Small training sets are in fact of no use to deep networks as, due to the large number of trainable parameters, they will very likely be subject to overfitting phenomena. On the other hand, the increment of the training set size through further manual or semi-automatic labellings can be costly, if not possible at times. Thus, the standard techniques to address this issue are transfer learning and data augmentation, which consists of applying some sort of "transformation" to existing labeled instances to let the training set grow in size. Although this approach works well in applications such as image classification, where it is relatively simple to design suitable transformation operators, it is not obvious how to apply it in more structured scenarios. Motivated by the observation that in virtually all application domains it is easy to obtain unlabeled data, in this paper we take a different perspective and propose a \emph{label augmentation} approach. We start from a small, curated labeled dataset and let the labels propagate through a larger set of unlabeled data using graph transduction techniques. This allows us to naturally use (second-order) similarity information which resides in the data, a source of information which is typically neglected by standard augmentation techniques. In particular, we show that by using known game theoretic transductive processes we can create larger and accurate enough labeled datasets which use results in better trained neural networks. Preliminary experiments are reported which demonstrate a consistent improvement over standard image classification datasets.Comment: Accepted on IEEE International Conference on Pattern Recognitio
    • …
    corecore