569 research outputs found

    Stellar Distributions and NIR Colours of Normal Galaxies

    Get PDF
    We discuss some results of a morphological study of edge-on galaxies, based on optical and especially near-infrared surface photometry. We find that the vertical surface brightness distributions of galaxies are fitted very well by exponential profiles, much better than by isothermal distributions. We find that in general the vertical scale height increases when going outward. This increase is strong for early-type spiral galaxies and very small for late types. We argue that it can be due to the presence of thick discs with scale lengths larger than the galaxy's main disc. Finally we discuss the colour-magnitude relation in I-K for spiral galaxies. We find that it is a tight relation, for which the scatter is similar to the observational uncertainties, with a steeper slope than for elliptical galaxies.Comment: Invited review, to appear in "Extragalactic Astronomy in the Infrared", eds. G.A. Mamon, Trinh Xuan Thuan, and J. Tran Thanh Van, Editions Frontieres, Gif-sur-Yvette. LaTeX2e, 10 pages, 6 postscript figures and moriond.sty included. See also ftp://kapteyn.astro.rug.nl/peletier/lesarcs.ps.g

    Spiral galaxy distance indicators based on near-infrared photometry

    Get PDF
    We compare two methods of distance determination to spiral galaxies using optical/near-infrared (NIR) observations, the (I-K) versus M_K colour - absolute magnitude (CM) relation and the I and K-band Tully-Fisher relation (TFR). Dust-free colours and NIR absolute magnitudes greatly enhance the usefulness of the NIR CM relation as a distance indicator for moderately to highly inclined_spiral_ galaxies_in the field_ (inclinations between ~ 80 and 90 deg); by avoiding contamination by dust the scatter in the CM relation is significantly reduced, compared to similar galaxy samples published previously. The CM relation can be used to determine distances to field spiral galaxies with M_K > -25.5, to at least M_K ~ -20. Our results, supplemented with previously published observations for which we can - to some degree - control the effects of extinction, are consistent with a universal nature of the CM relation for field spiral galaxies. High-resolution observations done with the Hubble Space Telescope can provide a powerful tool to calibrate the relation and extend the useful distance range by more than a factor of 2 compared to ground-based observations. The intrinsic scatter in the NIR CM relation in the absolute K-band magnitudes is ~0.5 mag, yielding a lower limit to the accuracy of distance determinations on the order of 25%. Although we find an unusually low scatter in the TFR (probably a statistical accident), a typical scatter in the TFR would yield distances to our sample galaxies with uncertainties of only about 15%. However, one of the main advantages of the use of the NIR CM relation is that_we only need photometric data_ to obtain distance estimates; use of the TFR requires additional kinematic data, although it can be used to significantly greater distances.Comment: 12 pages, incl. 5 postscript files, LaTeX, accepted for publication in MNRA

    IAU Symposium 241 - Stellar Populations as Building Blocks of Galaxies

    Full text link
    Stellar populations, building blocks of galaxies, are direct tracers of the star formation history, the chemical enrichment and the assembly of galaxies in the Universe. They therfore allow us to understand how galaxies formed and evolved. This last decade has witnessed a revolution in our observations of galaxies; with larger telescopes and new instruments we are not only able to look deeper in the Universe, we can also study nearby galaxies with greater detail. The fact that now is becoming possible to resolve stars up to the distance of Virgo Cluster allows us to rigorously compare and calibrate the analysis of the integrated light with resolved stellar populations. These Proceedings report the considerable progress made in recent years in this topic. Theorists and observers, researchers of resolved and unresolved stellar populations, discussed the ingredients of stellar population models, and rigorously compared them to new data, forcing theorists to develop more refined models and methods to derive the physical parameters of the stellar populations. New results from the Milky Way, the Local Group, and nearby and distant galaxies were presented.Comment: This is the table of contents of the upcoming proceedings of IAU Symposium 241. The book will appear in September, from Cambridge University Press, and will also be available electronically at http://www.journals.cambridge.org/action/displayJournal?jid=IA

    Near-Infrared Surface Photometry of Bulges and Disks of Spiral Galaxies. The Data

    Get PDF
    We present optical and near-infrared (NIR) surface brightness and colour profiles,in bands ranging from U to K, for the disk and bulge components of a complete sample of 30 nearby S0 to Sbc galaxies with inclinations larger than 50 degrees. We describe in detail the observations and the determination of colour parameters. Calibrated monochromatic and real-colour images are presented, as well as colour index maps. This data set, tailored for the study of the population characteristics of galaxy bulges, provides useful information on the colours of inner disks as well. In related papers, we have used them to quantify colour gradients in bulges, and age differentials between bulge and inner disk.Comment: 18 pages Latex with 2 postscript figures. Accepted for New Astronomy. This is an electronic paper; a complete preprint, including all of the tables and figures can be found at ftp://www.astro.rug.nl/peletier/newast/newast.htm

    The shape of galaxy disks: how the scale height increases with galactocentric distance

    Get PDF
    We present the results of a detailed study of vertical surface brightness profiles of edge-on disk galaxies. Although the exponential disk scale height is constant to first order approximation, we show that for the large majority of galaxies in our sample, the scale height increases with distance along the major axis. The effect is strongest for early-type galaxies, where the increase of the scale height can be as much as a factor of 1.5 per scalelength, but is almost 0 for the latest-type galaxies. The effect can be understood if early-type disk galaxies have thick disks with both scale lengths and scale heights larger than those of the dominant disk component. Its origin appears to be linked to the processes that have formed the thick disk.Comment: 4 pages, Latex, 3 figures, accepted for publication in Astronomy & Astrophysics (Letters

    The scatter in the near-infrared colour-magnitude relation in spiral galaxies

    Get PDF
    Abstract: Over the past three decades the established view of a nearly homogeneuous, featureless Universe on scales larger than a few Megaparsec has been completely overhauled. In particular through the advent of ever larger galaxy redshift surveys we were revealed a galaxy distribution displaying an intriguing cellular pattern in which filamentary and wall-like structures, as well as huge regions devoid of galaxies, are amongst the most conspicuous morphological elements. In this contribution we will provide an overview of the present observational state of affairs concerning the distribution of galaxies and the structure traced out by the matter distribution in our Universe. In conjunction with the insight on the dynamics of the structure formation process obtained through the mapping of the peculiar velocities of galaxies in our local Universe and the information on the embryonic circumstances that prevailed at the epoch of Recombination yielded by the various Cosmic Microwave Background experiments, we seek to arrive at a more or less compelling theoretical framework of structure formation.The main aspects of this framework of the rise of structure through gravitational instability can probably be most readily appreciated through illustrative examples of various scenarios, as for instance provided by some current state-of-the-art N-body simulations. We will subsequently wrap up the observational and theoretical evidence for the emergence and evolution of structure in the Universe by sketching the stage for the ultimate Holy Grail of late 20th century astrophysics, understanding the saga of the formation of what arguably are the most prominent and at the same time intoxicatingly beautiful and intriguing denizens of our Cosmos, the {it galaxies}
    corecore