58 research outputs found
Fingering Instability in Combustion
A thin solid (e.g., paper), burning against an oxidizing wind, develops a
fingering instability with two decoupled length scales. The spacing between
fingers is determined by the P\'eclet number (ratio between advection and
diffusion). The finger width is determined by the degree two dimensionality.
Dense fingers develop by recurrent tip splitting. The effect is observed when
vertical mass transport (due to gravity) is suppressed. The experimental
results quantitatively verify a model based on diffusion limited transport
Nonlinear Dynamics of Moving Curves and Surfaces: Applications to Physical Systems
The subject of moving curves (and surfaces) in three dimensional space (3-D)
is a fascinating topic not only because it represents typical nonlinear
dynamical systems in classical mechanics, but also finds important applications
in a variety of physical problems in different disciplines. Making use of the
underlying geometry, one can very often relate the associated evolution
equations to many interesting nonlinear evolution equations, including soliton
possessing nonlinear dynamical systems. Typical examples include dynamics of
filament vortices in ordinary and superfluids, spin systems, phases in
classical optics, various systems encountered in physics of soft matter, etc.
Such interrelations between geometric evolution and physical systems have
yielded considerable insight into the underlying dynamics. We present a
succinct tutorial analysis of these developments in this article, and indicate
further directions. We also point out how evolution equations for moving
surfaces are often intimately related to soliton equations in higher
dimensions.Comment: Review article, 38 pages, 7 figs. To appear in Int. Jour. of Bif. and
Chao
Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications
In a weakly excitable medium, characterized by a large threshold stimulus,
the free end of an isolated broken plane wave (wave tip) can either rotate
(steadily or unsteadily) around a large excitable core, thereby producing a
spiral pattern, or retract causing the wave to vanish at boundaries. An
asymptotic analysis of spiral motion and retraction is carried out in this
weakly excitable large core regime starting from the free-boundary limit of the
reaction-diffusion models, valid when the excited region is delimited by a thin
interface. The wave description is shown to naturally split between the tip
region and a far region that are smoothly matched on an intermediate scale.
This separation allows us to rigorously derive an equation of motion for the
wave tip, with the large scale motion of the spiral wavefront slaved to the
tip. This kinematic description provides both a physical picture and exact
predictions for a wide range of wave behavior, including: (i) steady rotation
(frequency and core radius), (ii) exact treatment of the meandering instability
in the free-boundary limit with the prediction that the frequency of unstable
motion is half the primary steady frequency (iii) drift under external actions
(external field with application to axisymmetric scroll ring motion in
three-dimensions, and spatial or/and time-dependent variation of excitability),
and (iv) the dynamics of multi-armed spiral waves with the new prediction that
steadily rotating waves with two or more arms are linearly unstable. Numerical
simulations of FitzHug-Nagumo kinetics are used to test several aspects of our
results. In addition, we discuss the semi-quantitative extension of this theory
to finite cores and pinpoint mathematical subtleties related to the thin
interface limit of singly diffusive reaction-diffusion models
Mean Field Theory of the Morphology Transition in Stochastic Diffusion Limited Growth
We propose a mean-field model for describing the averaged properties of a
class of stochastic diffusion-limited growth systems. We then show that this
model exhibits a morphology transition from a dense-branching structure with a
convex envelope to a dendritic one with an overall concave morphology. We have
also constructed an order parameter which describes the transition
quantitatively. The transition is shown to be continuous, which can be verified
by noting the non-existence of any hysteresis.Comment: 16 pages, 5 figure
Flame front propagation V: Stability Analysis of Flame Fronts: Dynamical Systems Approach in the Complex Plane
We consider flame front propagation in channel geometries. The steady state
solution in this problem is space dependent, and therefore the linear stability
analysis is described by a partial integro-differential equation with a space
dependent coefficient. Accordingly it involves complicated eigenfunctions. We
show that the analysis can be performed to required detail using a finite order
dynamical system in terms of the dynamics of singularities in the complex
plane, yielding detailed understanding of the physics of the eigenfunctions and
eigenvalues.Comment: 17 pages 7 figure
Traveling Waves, Front Selection, and Exact Nontrivial Exponents in a Random Fragmentation Problem
We study a random bisection problem where an initial interval of length x is
cut into two random fragments at the first stage, then each of these two
fragments is cut further, etc. We compute the probability P_n(x) that at the
n-th stage, each of the 2^n fragments is shorter than 1. We show that P_n(x)
approaches a traveling wave form, and the front position x_n increases as
x_n\sim n^{\beta}{\rho}^n for large n. We compute exactly the exponents
\rho=1.261076... and \beta=0.453025.... as roots of transcendental equations.
We also solve the m-section problem where each interval is broken into m
fragments. In particular, the generalized exponents grow as \rho_m\approx
m/(\ln m) and \beta_m\approx 3/(2\ln m) in the large m limit. Our approach
establishes an intriguing connection between extreme value statistics and
traveling wave propagation in the context of the fragmentation problem.Comment: 4 pages Revte
Perturbative Linearization of Reaction-Diffusion Equations
We develop perturbative expansions to obtain solutions for the initial-value
problems of two important reaction-diffusion systems, viz., the Fisher equation
and the time-dependent Ginzburg-Landau (TDGL) equation. The starting point of
our expansion is the corresponding singular-perturbation solution. This
approach transforms the solution of nonlinear reaction-diffusion equations into
the solution of a hierarchy of linear equations. Our numerical results
demonstrate that this hierarchy rapidly converges to the exact solution.Comment: 13 pages, 4 figures, latex2
Derivation of the relativistic "proper-time" quantum evolution equations from Canonical Invariance
Based on 1) the spectral resolution of the energy operator; 2) the linearity
of correspondence between physical observables and quantum Hermitian operators;
3) the definition of conjugate coordinate-momentum variables in classical
mechanics; and 4) the fact that the physical point in phase space remains
unchanged under (canonical) transformations between one pair of conjugate
variables to another, we are able to show that , the proper-time
rest-energy transformation matrices, are given as a*exp[-iE_s t_s/\hbar], from
which we obtain the proper-time rest -energy evolution equation
i\hbar{\partial/\partial t_s} |Psi>= \hat{E_s}|Psi>. For special relativistic
situations this equation can be reduced to the usual i\hbar{\partial/\partial
t}|Psi>=\hat{E}|Psi> dynamical equations, where t is the "reference time" and E
is the total energy. Extension of these equations to accelerating frames is
then provided.Comment: J. Phys. A, accepted for publicatio
Flame front propagation I: The Geometry of Developing Flame Fronts: Analysis with Pole Decomposition
The roughening of expanding flame fronts by the accretion of cusp-like
singularities is a fascinating example of the interplay between instability,
noise and nonlinear dynamics that is reminiscent of self-fractalization in
Laplacian growth patterns. The nonlinear integro-differential equation that
describes the dynamics of expanding flame fronts is amenable to analytic
investigations using pole decomposition. This powerful technique allows the
development of a satisfactory understanding of the qualitative and some
quantitative aspects of the complex geometry that develops in expanding flame
fronts.Comment: 4 pages, 2 figure
Existence of a rotating wave pattern in a disk for a wave front interaction model
[[abstract]]We study the rotating wave patterns in an excitable medium in a disk. This wave pattern is rotating along the given disk boundary with a constant angular speed. To study this pattern we use the wave front interaction model proposed by Zykov in 2007. This model is derived from the FitzHugh-Nagumo equation and it can be described by two systems of ordinary differential equations for wave front and wave back respectively. Using a delicate shooting argument with the help of the comparison principle, we derive the existence and uniqueness of rotating wave patterns for any admissible angular speed with convex front in a given disk.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
- …