11 research outputs found

    Consensus recommendations for clinical assessment tools for the diagnosis of posterior cortical atrophy syndrome from the Atypical AD PIA of ISTAART

    Get PDF
    INTRODUCTION: Delay in diagnosis of posterior cortical atrophy (PCA) syndrome is common, and the lack of familiarity with assessment tools for identifying visual cortical dysfunction is a contributing factor. We propose recommendations for the approach to the evaluation of PCA clinical features during the office visit, the neuropsychological evaluation, and the research setting. A recommended screening battery for eye clinics is also proposed. METHODS: Recommendations were developed using results from a web-based survey of members of Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART) Atypical Alzheimer's Disease Professional Interest Area (PIA), literature review, and consensus by the PCA assessment working party of the Atypical Alzheimer's Disease PIA. RESULTS: Survey results revealed robust agreement for assessment tool preferences for PCA features, and many respondents indicated that they reserve assessment tools for use only when PCA is suspected. For some PCA features, curated tools were preferred over validated battery tools, particularly for the office visit. Consensus recommendations superseded survey preferences for two core cognitive features within the 2017 PCA diagnostic criteria. DISCUSSION: These consensus recommendations provide an evaluation framework for PCA clinical features and can facilitate timely and accurate recognition and diagnosis of PCA. Broader use of these tools should be sought, and development and validation of novel PCA clinical outcome assessments are needed to improve our understanding of atypical AD and other dementias and support the inclusion of those with PCA in treatment trials

    Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is one of the most common causes of dementia in the world. Patients with AD frequently complain of vision disturbances that do not manifest as changes in routine ophthalmological examination findings. The main causes of these disturbances are neuropathological changes in the visual cortex, although abnormalities in the retina and optic nerve cannot be excluded. Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) tests are commonly used in ophthalmology to estimate bioelectrical function of the retina and optic nerve. The aim of this study was to determine whether retinal and optic nerve function, measured by PERG and PVEP tests, is changed in individuals in the early stages of AD with normal routine ophthalmological examination results. Standard PERG and PVEP tests were performed in 30 eyes of 30 patients with the early stages of AD. The results were compared to 30 eyes of 30 normal healthy controls. PERG and PVEP tests were recorded in accordance with the International Society for Clinical Electrophysiology of Vision (ISCEV) standards. Additionally, neural conduction was measured using retinocortical time (RCT)—the difference between P100-wave latency in PVEP and P50-wave implicit time in PERG. In PERG test, PVEP test, and RCT, statistically significant changes were detected. In PERG examination, increased implicit time of P50-wave (P < 0.03) and amplitudes reductions in P50- and N95-waves (P < 0.0001) were observed. In PVEP examination, increased latency of P100-wave (P < 0.0001) was found. A significant increase in RCT (P < 0.0001) was observed. The most prevalent features were amplitude reduction in N95-wave and increased latency of P100-wave which were seen in 56.7% (17/30) of the AD eyes. In patients with the early stages of AD and normal routine ophthalmological examination results, dysfunction of the retinal ganglion cells as well as of the optic nerve is present, as detected by PERG and PVEP tests. These dysfunctions, at least partially, explain the cause of visual disturbances observed in patients with the early stages of AD

    Seeing Double: Sertraline and Diplopia: A Case Report

    No full text

    Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys.

    No full text
    In five rhesus monkeys (Macaca mulatta) we used anterograde and retrograde tracing techniques to investigate the projection from the inferior temporal cortex (area TE) to the prefrontal cortex as well as the course of the projecting fibers. The results showed that TE projects to both the inferior convexity and orbital surface of prefrontal cortex and that these projections course almost exclusively via the uncinate fascicle. Transection of the uncinate fascicle deprives the prefrontal cortex of virtually all input from TE, but leaves intact inputs from prestriate and parietal visual areas as well as the amygdala. Such transection also leaves intact many projections from TE to targets other than the prefrontal cortex, including the amygdala, ventral putamen, tail of the caudate nucleus, and pulvinar

    Consensus classification of posterior cortical atrophy

    No full text
    Introduction A classification framework for posterior cortical atrophy (PCA) is proposed to improve the uniformity of definition of the syndrome in a variety of research settings. Methods Consensus statements about PCAwere developed through a detailed literature review, the formation of an international multidisciplinary working party which convened on four occasions, and a Web-based quantitative survey regarding symptom frequency and the conceptualization of PCA. Results A three-level classification framework for PCA is described comprising both syndromeand disease-level descriptions. Classification level 1 (PCA) defines the core clinical, cognitive, and neuroimaging features and exclusion criteria of the clinico-radiological syndrome. Classification level 2 (PCA-pure, PCA-plus) establishes whether, in addition to the core PCA syndrome, the core features of any other neurodegenerative syndromes are present. Classification level 3 (PCA attributable to AD [PCA-AD], Lewy body disease [PCA-LBD], corticobasal degeneration [PCA-CBD], prion disease [PCA-prion]) provides a more formal determination of the underlying cause of the PCA syndrome, based on available pathophysiological biomarker evidence. The issue of additional syndrome-level descriptors is discussed in relation to the challenges of defining stages of syndrome severity and characterizing phenotypic heterogeneity within the PCA spectrum. Discussion There was strong agreement regarding the definition of the core clinico-radiological syndrome, meaning that the current consensus statement should be regarded as a refinement, development, and extension of previous single-center PCA criteria rather than any wholesale alteration or redescription of the syndrome. The framework and terminology may facilitate the interpretation of research data across studies, be applicable across a broad range of research scenarios (e.g., behavioral interventions, pharmacological trials), and provide a foundation for future collaborative work.</p
    corecore