5 research outputs found
Isogeometric analysis af laminated composite structures
ΠΡΠ΅Π΄ΠΌΠ΅Ρ ΠΎΠ²Π΅ Π΄ΠΎΠΊΡΠΎΡΡΠΊΠ΅ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·Π° Π»Π°ΠΌΠΈΠ½ΠΈΡΠ°Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡ
ΡΡΡΡΠΊΡΡΡΠ° ΡΠΏΠΎΡΡΠ΅Π±ΠΎΠΌ ΠΈΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΎΠ³ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ°.
ΠΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΡΠΈΡΡΠΈ ΠΈΡΡΠ΅ Π±Π°Π·Π½Π΅ ΡΡΠ½ΠΊΡΠΈΡΠ΅ Π·Π° ΡΠ΅ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅
ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ Π·Π° Π°ΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΡΡ ΠΏΠΎΡΠ° Π½Π΅ΠΏΠΎΠ·Π½Π°ΡΠΈΡ
Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π£ ΠΎΠΊΠ²ΠΈΡΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅
ΡΠ°Π·Π²ΠΈΡΠ΅Π½ΠΈ ΡΡ ΠΈΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»Π°ΠΌΠΈΠ½ΠΈΡΠ°Π½ΠΈΡ
ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ° ΡΠΎΡΠΌΡΠ»ΠΈΡΠ°Π½ΠΈΡ
Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅ΠΎΡΠΈΡΠ° Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ ΡΠ»ΠΎΡΠ° Π±Π°Π·ΠΈΡΠ°Π½ΠΈΡ
Π½Π°
ΠΠΈΡΡ
ΠΎΡ-ΠΠ°Π²ΠΎΠ²ΠΎΡ, ΠΠΈΠ½Π΄Π»ΠΈΠ½-Π Π°ΡΠ·Π½Π΅ΡΠΎΠ²ΠΎΡ ΠΈ Π Π΅Π΄ΠΈΡΠ΅Π²ΠΎΡ ΡΠ΅ΠΎΡΠΈΡΠΈ ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ°
ΡΠ· ΡΠΏΠΎΡΡΠ΅Π±Ρ NURBS Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ°. Π€ΠΎΡΠΌΡΠ»ΠΈΡΠ°Π½e ΡΡ ΠΎΡΠ½ΠΎΠ²Π½Π΅ ΠΌΠ°ΡΡΠΈΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π°
ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° Π·Π° ΡΡΠ°ΡΠΈΡΠΊΡ, Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΡ ΠΈ Π°Π½Π°Π»ΠΈΠ·Ρ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ
Π·Π° ΡΠ²Π΅ ΡΡΠΈ ΡΠ΅ΠΎΡΠΈΡΠ΅ ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ°. ΠΠ΅Π·Π΅ ΠΈΠ·ΠΌΠ΅ΡΡ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ° ΠΈ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡΠ° ΡΡ
Π»ΠΈΠ½Π΅Π°ΡΠ½Π΅, ΠΎΡΠΈΠΌ Ρ ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·Π΅ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ Π³Π΄Π΅ ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠ΅Π½
ΡΡΠ°Π½Π΄Π°ΡΠ΄Π½ΠΈ Π½Π΅Π»ΠΈΠ½Π΅Π°ΡΠ½ΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΎΠ΄ΡΠ΅ΡΠΈΠ²Π°ΡΠ΅ ΠΌΠ°ΡΡΠΈΡΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠ΅ ΠΊΡΡΡΠΎΡΡΠΈ, Π΄ΠΎΠΊ
ΡΠ΅ Π²Π΅Π·Π° ΠΈΠ·ΠΌΠ΅ΡΡ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡΠ° ΠΈ Π½Π°ΠΏΠΎΠ½Π° Π»ΠΈΠ½Π΅Π°ΡΠ½Π°. ΠΡΠ½ΠΎΠ²Π½Π΅ ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π΅ ΠΌΠ΅ΡΠΎΠ΄Π°
ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° ΠΈΠ·Π²Π΅Π΄Π΅Π½Π΅ ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ°.
Π£ ΠΎΠΊΠ²ΠΈΡΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅ ΠΈΠ·Π²ΡΡΠ΅Π½ΠΎ ΡΠ΅ ΠΎΠΏΡΠ΅ΠΆΠ½ΠΎ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΎ ΡΠ΅ΡΡΠΈΡΠ°ΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΡ ΡΠΏΠΎΡΠ΅ΡΠ΅Π½ΠΈ ΡΠ° Π°Π½Π°Π»ΠΈΡΠΈΡΠΊΠΈΠΌ ΡΠ΅ΡΠ΅ΡΠΈΠΌΠ° ΠΈ ΠΎΡΡΠ°Π»ΠΈΠΌ
Π΄ΠΎΡΡΡΠΏΠ½ΠΈΠΌ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈΠΌΠ°. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅ Π²Π΅Π»ΠΈΠΊΠ° ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ ΠΎΠ΄Π½ΠΎΡΡ Π½Π°
ΠΊΠΎΠ½Π²Π΅Π½ΡΠΈΠΎΠ½Π°Π»Π½ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° ΠΈ ΠΏΠΎΡΡΠΎΡΠ΅ΡΠ΅ Π°Π»ΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½Π΅ ΠΌΠ΅ΡΠΎΠ΄Π΅.
Π‘ΡΠ°ΡΠΈΡΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΎΠ΄Π΅Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠ΅ Π²ΠΈΡΠΎΠΊΡ ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ ΠΏΡΠ΅Π΄Π½ΠΎΡΡΠΈ
ΡΠΏΠΎΡΡΠ΅Π±Π΅ Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ° Π²ΠΈΡΠ΅Π³ ΡΠ΅Π΄Π°. ΠΠΎΡΠΈΡΡΠ΅ΡΠΈ ΠΎΡΠΎΠ±ΠΈΠ½Π΅ NURBS Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ° ΡΠ°Π·Π²ΠΈΡΠ΅Π½Π° ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ° ΠΏΡΠΎΡΠ°ΡΡΠ½Π° ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½ΠΈΡ
Π½Π°ΠΏΠΎΠ½Π° Ρ
Π·Π°ΡΠ΅Π±Π½ΠΎΠΌ ΠΊΠΎΡΠ°ΠΊΡ, Π½Π°ΠΊΠΎΠ½ ΠΈΠ·ΡΠ°ΡΡΠ½Π°Π²Π°ΡΠ° ΠΏΠΎΡΠ° ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ°. ΠΠ·ΡΠ°ΡΡΠ½Π°ΡΠΈ ΡΡ
ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½ΠΈ Π½Π°ΠΏΠΎΠ½ΠΈ ΠΊΠΎΡΠΈΡΡΠ΅ΡΠ΅ΠΌ ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π° ΡΠ°Π²Π½ΠΎΡΠ΅ΠΆΠ΅ Π·Π° ΠΏΠ»ΠΎΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΎΠ²Π°Π½Π΅
ΡΠ°Π·Π»ΠΈΡΠΈΡΠΈΠΌ ΡΠ΅ΠΎΡΠΈΡΠ°ΠΌΠ° ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ° ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅ ΡΠΈΡ
ΠΎΠ²Π° Π²Π΅Π»ΠΈΠΊΠ° ΡΠ°ΡΠ½ΠΎΡΡ
Ρ ΠΎΠ΄Π½ΠΎΡΡ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½Π΅ Π½Π°ΠΏΠΎΠ½Π΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½Π΅ ΠΈΠ· ΠΊΠΎΠ½ΡΡΠΈΡΡΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π°.
ΠΠ½Π°Π»ΠΈΠ·Π° ΡΠ»ΠΎΠ±ΠΎΠ΄Π½ΠΈΡ
Π²ΠΈΠ±ΡΠ°ΡΠΈΡΠ° ΠΈ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»Π΅ ΡΡ Π²ΠΈΡΠΎΠΊΡ
ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°...This doctoral dissertation deals with analysis of laminated composite structures using
isogeometric finite element method. In isogeometric analysis same basis functions that
are used for geometry representation are also used for approximation of unknown
quantities. Isogeometrical mathematical models of laminated thin walled structures are
formulated. The proposed models are based on most popular equivalent layer theories,
that is Kirchoff-love, Mindlin-Reissner and Reddy's plate theories with the use of
NURBS basis functions. Main matrices of finite element method for static, dynamic and
stability analysis are formulated for all three plate theories. Relation between
displacements and strains are linear, except for the case of stability analysis where
standard non-linear procedure is used for geometric stiffness matrix formulation.
Constitutive relations are linear. Finite element equations are derived using
displacement method,
Extensive numerical testing of the proposed method is conducted in order to verify
the performance of the method. Obtained results are compared with analytical solutions
and other available results. The obtained results demonstrated high accuracy of the
method in comparison to the conventional finite element method and existing
alternatives.
Static analysis of developed models showed high accuracy of the proposed
formulation and the advantages of using higher-order basis functions. Using the
properties of NURBS basis functions, methodology for interlaminar stress calculation is
developed that is able to accurately compute interlaminar stresses in a single separate
step, after calculation of displacement field is performed. The interlaminar stresses are
calculated using the equilibrium equations for plates modeled with different plate
theories. High accuracy of equilibrium interlaminar stresses compared to constitutive
interlaminar stresses is demonstrated. Free vibration and buckling analysis also
demonstrated high accuracy of the method..
Isogeometric analysis af laminated composite structures
ΠΡΠ΅Π΄ΠΌΠ΅Ρ ΠΎΠ²Π΅ Π΄ΠΎΠΊΡΠΎΡΡΠΊΠ΅ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·Π° Π»Π°ΠΌΠΈΠ½ΠΈΡΠ°Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡ
ΡΡΡΡΠΊΡΡΡΠ° ΡΠΏΠΎΡΡΠ΅Π±ΠΎΠΌ ΠΈΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΎΠ³ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ°.
ΠΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΡΠΈΡΡΠΈ ΠΈΡΡΠ΅ Π±Π°Π·Π½Π΅ ΡΡΠ½ΠΊΡΠΈΡΠ΅ Π·Π° ΡΠ΅ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅
ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ Π·Π° Π°ΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΡΡ ΠΏΠΎΡΠ° Π½Π΅ΠΏΠΎΠ·Π½Π°ΡΠΈΡ
Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π£ ΠΎΠΊΠ²ΠΈΡΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅
ΡΠ°Π·Π²ΠΈΡΠ΅Π½ΠΈ ΡΡ ΠΈΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»Π°ΠΌΠΈΠ½ΠΈΡΠ°Π½ΠΈΡ
ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ° ΡΠΎΡΠΌΡΠ»ΠΈΡΠ°Π½ΠΈΡ
Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅ΠΎΡΠΈΡΠ° Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ ΡΠ»ΠΎΡΠ° Π±Π°Π·ΠΈΡΠ°Π½ΠΈΡ
Π½Π°
ΠΠΈΡΡ
ΠΎΡ-ΠΠ°Π²ΠΎΠ²ΠΎΡ, ΠΠΈΠ½Π΄Π»ΠΈΠ½-Π Π°ΡΠ·Π½Π΅ΡΠΎΠ²ΠΎΡ ΠΈ Π Π΅Π΄ΠΈΡΠ΅Π²ΠΎΡ ΡΠ΅ΠΎΡΠΈΡΠΈ ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ°
ΡΠ· ΡΠΏΠΎΡΡΠ΅Π±Ρ NURBS Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ°. Π€ΠΎΡΠΌΡΠ»ΠΈΡΠ°Π½e ΡΡ ΠΎΡΠ½ΠΎΠ²Π½Π΅ ΠΌΠ°ΡΡΠΈΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π°
ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° Π·Π° ΡΡΠ°ΡΠΈΡΠΊΡ, Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΡ ΠΈ Π°Π½Π°Π»ΠΈΠ·Ρ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ
Π·Π° ΡΠ²Π΅ ΡΡΠΈ ΡΠ΅ΠΎΡΠΈΡΠ΅ ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ°. ΠΠ΅Π·Π΅ ΠΈΠ·ΠΌΠ΅ΡΡ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ° ΠΈ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡΠ° ΡΡ
Π»ΠΈΠ½Π΅Π°ΡΠ½Π΅, ΠΎΡΠΈΠΌ Ρ ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·Π΅ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ Π³Π΄Π΅ ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠ΅Π½
ΡΡΠ°Π½Π΄Π°ΡΠ΄Π½ΠΈ Π½Π΅Π»ΠΈΠ½Π΅Π°ΡΠ½ΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΎΠ΄ΡΠ΅ΡΠΈΠ²Π°ΡΠ΅ ΠΌΠ°ΡΡΠΈΡΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠ΅ ΠΊΡΡΡΠΎΡΡΠΈ, Π΄ΠΎΠΊ
ΡΠ΅ Π²Π΅Π·Π° ΠΈΠ·ΠΌΠ΅ΡΡ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡΠ° ΠΈ Π½Π°ΠΏΠΎΠ½Π° Π»ΠΈΠ½Π΅Π°ΡΠ½Π°. ΠΡΠ½ΠΎΠ²Π½Π΅ ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π΅ ΠΌΠ΅ΡΠΎΠ΄Π°
ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° ΠΈΠ·Π²Π΅Π΄Π΅Π½Π΅ ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ°.
Π£ ΠΎΠΊΠ²ΠΈΡΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅ ΠΈΠ·Π²ΡΡΠ΅Π½ΠΎ ΡΠ΅ ΠΎΠΏΡΠ΅ΠΆΠ½ΠΎ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΎ ΡΠ΅ΡΡΠΈΡΠ°ΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΡ ΡΠΏΠΎΡΠ΅ΡΠ΅Π½ΠΈ ΡΠ° Π°Π½Π°Π»ΠΈΡΠΈΡΠΊΠΈΠΌ ΡΠ΅ΡΠ΅ΡΠΈΠΌΠ° ΠΈ ΠΎΡΡΠ°Π»ΠΈΠΌ
Π΄ΠΎΡΡΡΠΏΠ½ΠΈΠΌ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈΠΌΠ°. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅ Π²Π΅Π»ΠΈΠΊΠ° ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ ΠΎΠ΄Π½ΠΎΡΡ Π½Π°
ΠΊΠΎΠ½Π²Π΅Π½ΡΠΈΠΎΠ½Π°Π»Π½ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° ΠΈ ΠΏΠΎΡΡΠΎΡΠ΅ΡΠ΅ Π°Π»ΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½Π΅ ΠΌΠ΅ΡΠΎΠ΄Π΅.
Π‘ΡΠ°ΡΠΈΡΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΎΠ΄Π΅Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠ΅ Π²ΠΈΡΠΎΠΊΡ ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ ΠΏΡΠ΅Π΄Π½ΠΎΡΡΠΈ
ΡΠΏΠΎΡΡΠ΅Π±Π΅ Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ° Π²ΠΈΡΠ΅Π³ ΡΠ΅Π΄Π°. ΠΠΎΡΠΈΡΡΠ΅ΡΠΈ ΠΎΡΠΎΠ±ΠΈΠ½Π΅ NURBS Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ° ΡΠ°Π·Π²ΠΈΡΠ΅Π½Π° ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ° ΠΏΡΠΎΡΠ°ΡΡΠ½Π° ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½ΠΈΡ
Π½Π°ΠΏΠΎΠ½Π° Ρ
Π·Π°ΡΠ΅Π±Π½ΠΎΠΌ ΠΊΠΎΡΠ°ΠΊΡ, Π½Π°ΠΊΠΎΠ½ ΠΈΠ·ΡΠ°ΡΡΠ½Π°Π²Π°ΡΠ° ΠΏΠΎΡΠ° ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ°. ΠΠ·ΡΠ°ΡΡΠ½Π°ΡΠΈ ΡΡ
ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½ΠΈ Π½Π°ΠΏΠΎΠ½ΠΈ ΠΊΠΎΡΠΈΡΡΠ΅ΡΠ΅ΠΌ ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π° ΡΠ°Π²Π½ΠΎΡΠ΅ΠΆΠ΅ Π·Π° ΠΏΠ»ΠΎΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΎΠ²Π°Π½Π΅
ΡΠ°Π·Π»ΠΈΡΠΈΡΠΈΠΌ ΡΠ΅ΠΎΡΠΈΡΠ°ΠΌΠ° ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ° ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅ ΡΠΈΡ
ΠΎΠ²Π° Π²Π΅Π»ΠΈΠΊΠ° ΡΠ°ΡΠ½ΠΎΡΡ
Ρ ΠΎΠ΄Π½ΠΎΡΡ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½Π΅ Π½Π°ΠΏΠΎΠ½Π΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½Π΅ ΠΈΠ· ΠΊΠΎΠ½ΡΡΠΈΡΡΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π°.
ΠΠ½Π°Π»ΠΈΠ·Π° ΡΠ»ΠΎΠ±ΠΎΠ΄Π½ΠΈΡ
Π²ΠΈΠ±ΡΠ°ΡΠΈΡΠ° ΠΈ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»Π΅ ΡΡ Π²ΠΈΡΠΎΠΊΡ
ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°...This doctoral dissertation deals with analysis of laminated composite structures using
isogeometric finite element method. In isogeometric analysis same basis functions that
are used for geometry representation are also used for approximation of unknown
quantities. Isogeometrical mathematical models of laminated thin walled structures are
formulated. The proposed models are based on most popular equivalent layer theories,
that is Kirchoff-love, Mindlin-Reissner and Reddy's plate theories with the use of
NURBS basis functions. Main matrices of finite element method for static, dynamic and
stability analysis are formulated for all three plate theories. Relation between
displacements and strains are linear, except for the case of stability analysis where
standard non-linear procedure is used for geometric stiffness matrix formulation.
Constitutive relations are linear. Finite element equations are derived using
displacement method,
Extensive numerical testing of the proposed method is conducted in order to verify
the performance of the method. Obtained results are compared with analytical solutions
and other available results. The obtained results demonstrated high accuracy of the
method in comparison to the conventional finite element method and existing
alternatives.
Static analysis of developed models showed high accuracy of the proposed
formulation and the advantages of using higher-order basis functions. Using the
properties of NURBS basis functions, methodology for interlaminar stress calculation is
developed that is able to accurately compute interlaminar stresses in a single separate
step, after calculation of displacement field is performed. The interlaminar stresses are
calculated using the equilibrium equations for plates modeled with different plate
theories. High accuracy of equilibrium interlaminar stresses compared to constitutive
interlaminar stresses is demonstrated. Free vibration and buckling analysis also
demonstrated high accuracy of the method..
Isogeometric analysis af laminated composite structures
ΠΡΠ΅Π΄ΠΌΠ΅Ρ ΠΎΠ²Π΅ Π΄ΠΎΠΊΡΠΎΡΡΠΊΠ΅ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·Π° Π»Π°ΠΌΠΈΠ½ΠΈΡΠ°Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡ
ΡΡΡΡΠΊΡΡΡΠ° ΡΠΏΠΎΡΡΠ΅Π±ΠΎΠΌ ΠΈΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΎΠ³ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ°.
ΠΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΡΠΈΡΡΠΈ ΠΈΡΡΠ΅ Π±Π°Π·Π½Π΅ ΡΡΠ½ΠΊΡΠΈΡΠ΅ Π·Π° ΡΠ΅ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅
ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ Π·Π° Π°ΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΡΡ ΠΏΠΎΡΠ° Π½Π΅ΠΏΠΎΠ·Π½Π°ΡΠΈΡ
Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π£ ΠΎΠΊΠ²ΠΈΡΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅
ΡΠ°Π·Π²ΠΈΡΠ΅Π½ΠΈ ΡΡ ΠΈΠ·ΠΎΠ³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»Π°ΠΌΠΈΠ½ΠΈΡΠ°Π½ΠΈΡ
ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ° ΡΠΎΡΠΌΡΠ»ΠΈΡΠ°Π½ΠΈΡ
Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅ΠΎΡΠΈΡΠ° Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ ΡΠ»ΠΎΡΠ° Π±Π°Π·ΠΈΡΠ°Π½ΠΈΡ
Π½Π°
ΠΠΈΡΡ
ΠΎΡ-ΠΠ°Π²ΠΎΠ²ΠΎΡ, ΠΠΈΠ½Π΄Π»ΠΈΠ½-Π Π°ΡΠ·Π½Π΅ΡΠΎΠ²ΠΎΡ ΠΈ Π Π΅Π΄ΠΈΡΠ΅Π²ΠΎΡ ΡΠ΅ΠΎΡΠΈΡΠΈ ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ°
ΡΠ· ΡΠΏΠΎΡΡΠ΅Π±Ρ NURBS Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ°. Π€ΠΎΡΠΌΡΠ»ΠΈΡΠ°Π½e ΡΡ ΠΎΡΠ½ΠΎΠ²Π½Π΅ ΠΌΠ°ΡΡΠΈΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π°
ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° Π·Π° ΡΡΠ°ΡΠΈΡΠΊΡ, Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΡ ΠΈ Π°Π½Π°Π»ΠΈΠ·Ρ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ
Π·Π° ΡΠ²Π΅ ΡΡΠΈ ΡΠ΅ΠΎΡΠΈΡΠ΅ ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ°. ΠΠ΅Π·Π΅ ΠΈΠ·ΠΌΠ΅ΡΡ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ° ΠΈ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡΠ° ΡΡ
Π»ΠΈΠ½Π΅Π°ΡΠ½Π΅, ΠΎΡΠΈΠΌ Ρ ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·Π΅ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ Π³Π΄Π΅ ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠ΅Π½
ΡΡΠ°Π½Π΄Π°ΡΠ΄Π½ΠΈ Π½Π΅Π»ΠΈΠ½Π΅Π°ΡΠ½ΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΎΠ΄ΡΠ΅ΡΠΈΠ²Π°ΡΠ΅ ΠΌΠ°ΡΡΠΈΡΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΡΠΊΠ΅ ΠΊΡΡΡΠΎΡΡΠΈ, Π΄ΠΎΠΊ
ΡΠ΅ Π²Π΅Π·Π° ΠΈΠ·ΠΌΠ΅ΡΡ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡΠ° ΠΈ Π½Π°ΠΏΠΎΠ½Π° Π»ΠΈΠ½Π΅Π°ΡΠ½Π°. ΠΡΠ½ΠΎΠ²Π½Π΅ ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π΅ ΠΌΠ΅ΡΠΎΠ΄Π°
ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° ΠΈΠ·Π²Π΅Π΄Π΅Π½Π΅ ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ°.
Π£ ΠΎΠΊΠ²ΠΈΡΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ΅ ΠΈΠ·Π²ΡΡΠ΅Π½ΠΎ ΡΠ΅ ΠΎΠΏΡΠ΅ΠΆΠ½ΠΎ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΎ ΡΠ΅ΡΡΠΈΡΠ°ΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΡ ΡΠΏΠΎΡΠ΅ΡΠ΅Π½ΠΈ ΡΠ° Π°Π½Π°Π»ΠΈΡΠΈΡΠΊΠΈΠΌ ΡΠ΅ΡΠ΅ΡΠΈΠΌΠ° ΠΈ ΠΎΡΡΠ°Π»ΠΈΠΌ
Π΄ΠΎΡΡΡΠΏΠ½ΠΈΠΌ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈΠΌΠ°. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅ Π²Π΅Π»ΠΈΠΊΠ° ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° Ρ ΠΎΠ΄Π½ΠΎΡΡ Π½Π°
ΠΊΠΎΠ½Π²Π΅Π½ΡΠΈΠΎΠ½Π°Π»Π½ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ½Π°ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½Π°ΡΠ° ΠΈ ΠΏΠΎΡΡΠΎΡΠ΅ΡΠ΅ Π°Π»ΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½Π΅ ΠΌΠ΅ΡΠΎΠ΄Π΅.
Π‘ΡΠ°ΡΠΈΡΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΎΠ΄Π΅Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΠ΅ Π²ΠΈΡΠΎΠΊΡ ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ ΠΏΡΠ΅Π΄Π½ΠΎΡΡΠΈ
ΡΠΏΠΎΡΡΠ΅Π±Π΅ Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ° Π²ΠΈΡΠ΅Π³ ΡΠ΅Π΄Π°. ΠΠΎΡΠΈΡΡΠ΅ΡΠΈ ΠΎΡΠΎΠ±ΠΈΠ½Π΅ NURBS Π±Π°Π·Π½ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΡΠ° ΡΠ°Π·Π²ΠΈΡΠ΅Π½Π° ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ° ΠΏΡΠΎΡΠ°ΡΡΠ½Π° ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½ΠΈΡ
Π½Π°ΠΏΠΎΠ½Π° Ρ
Π·Π°ΡΠ΅Π±Π½ΠΎΠΌ ΠΊΠΎΡΠ°ΠΊΡ, Π½Π°ΠΊΠΎΠ½ ΠΈΠ·ΡΠ°ΡΡΠ½Π°Π²Π°ΡΠ° ΠΏΠΎΡΠ° ΠΏΠΎΠΌΠ΅ΡΠ°ΡΠ°. ΠΠ·ΡΠ°ΡΡΠ½Π°ΡΠΈ ΡΡ
ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½ΠΈ Π½Π°ΠΏΠΎΠ½ΠΈ ΠΊΠΎΡΠΈΡΡΠ΅ΡΠ΅ΠΌ ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π° ΡΠ°Π²Π½ΠΎΡΠ΅ΠΆΠ΅ Π·Π° ΠΏΠ»ΠΎΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΎΠ²Π°Π½Π΅
ΡΠ°Π·Π»ΠΈΡΠΈΡΠΈΠΌ ΡΠ΅ΠΎΡΠΈΡΠ°ΠΌΠ° ΠΏΠΎΠ²ΡΡΠΈΠ½ΡΠΊΠΈΡ
Π½ΠΎΡΠ°ΡΠ° ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅ ΡΠΈΡ
ΠΎΠ²Π° Π²Π΅Π»ΠΈΠΊΠ° ΡΠ°ΡΠ½ΠΎΡΡ
Ρ ΠΎΠ΄Π½ΠΎΡΡ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ»Π°ΠΌΠΈΠ½Π°ΡΠ½Π΅ Π½Π°ΠΏΠΎΠ½Π΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½Π΅ ΠΈΠ· ΠΊΠΎΠ½ΡΡΠΈΡΡΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅Π΄Π½Π°ΡΠΈΠ½Π°.
ΠΠ½Π°Π»ΠΈΠ·Π° ΡΠ»ΠΎΠ±ΠΎΠ΄Π½ΠΈΡ
Π²ΠΈΠ±ΡΠ°ΡΠΈΡΠ° ΠΈ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π΅ ΡΡΠ°Π±ΠΈΠ»Π½ΠΎΡΡΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»Π΅ ΡΡ Π²ΠΈΡΠΎΠΊΡ
ΡΠ°ΡΠ½ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°...This doctoral dissertation deals with analysis of laminated composite structures using
isogeometric finite element method. In isogeometric analysis same basis functions that
are used for geometry representation are also used for approximation of unknown
quantities. Isogeometrical mathematical models of laminated thin walled structures are
formulated. The proposed models are based on most popular equivalent layer theories,
that is Kirchoff-love, Mindlin-Reissner and Reddy's plate theories with the use of
NURBS basis functions. Main matrices of finite element method for static, dynamic and
stability analysis are formulated for all three plate theories. Relation between
displacements and strains are linear, except for the case of stability analysis where
standard non-linear procedure is used for geometric stiffness matrix formulation.
Constitutive relations are linear. Finite element equations are derived using
displacement method,
Extensive numerical testing of the proposed method is conducted in order to verify
the performance of the method. Obtained results are compared with analytical solutions
and other available results. The obtained results demonstrated high accuracy of the
method in comparison to the conventional finite element method and existing
alternatives.
Static analysis of developed models showed high accuracy of the proposed
formulation and the advantages of using higher-order basis functions. Using the
properties of NURBS basis functions, methodology for interlaminar stress calculation is
developed that is able to accurately compute interlaminar stresses in a single separate
step, after calculation of displacement field is performed. The interlaminar stresses are
calculated using the equilibrium equations for plates modeled with different plate
theories. High accuracy of equilibrium interlaminar stresses compared to constitutive
interlaminar stresses is demonstrated. Free vibration and buckling analysis also
demonstrated high accuracy of the method..
Assessment results of fluid-structure interaction numerical simulation using fuzzy logic
A fuzzy approximation concept is applied in order to predict results of
coupled computational structure mechanics and computational fluid dynamics
while solving a problem of steady incompressible gas flow through thermally
loaded rectangular thin-walled channel. Channel wall deforms into wave - type
shapes depending on thermal load and fluid inlet velocity inducing the
changes of fluid flow accordingly. A set of fluid - structure interaction
(FSI) numerical tests have been defined by varying the values of fluid inlet
velocity, temperature of inner and outer surface of the channel wall and
numerical grid density. The unsteady Navier-Stokes equations are numerically
solved using an element-based finite volume method and second order backward
Euler discretization scheme. The structural model is solved by finite element
method including geometric and material nonlinearities. The implicit two-way
iterative code coupling, partitioned solution approach, were used while
solving these numerical tests. Results of numerical analysis indicate that
gravity and pressure distribution inside the channel contributes to
triggering the shape of deformation. In the inverse problem, the results of
FSI numerical simulations formed a database of input variables for
development fuzzy logic based models considering downstream pressure drop and
maximum stresses as the objective functions. Developed fuzzy models predicted
targeting results within a reasonable accuracy limit at lower computation
cost compared to series of FSI numerical calculations. Smaller relative
difference were obtained when calculating the values of pressure drop then
maximal stresses indicating that transfer function influence on output values
have to be additionally investigated. [Projekat Ministarstva nauke Republike
Srbije, br. III42010, br.TR33050 i br. TR35035
Isogeometric bending analysis of composite plates based on a higher-order shear deformation theory
This research paper presents an isogeometric plate finite element formulation for analysis of thick composite plates. Isogeometric finite element method which is based on non-uniform rational B-splines (NURBS) basis functions, is a novel numerical procedure developed to bridge the gap between CAD and FEM modeling of structures. In order to investigate the behavior of isogeometric plate elements under static loading, plate kinematics is based on third order shear deformation theory (TSDT) of Reddy, which is free from transverse shear locking. This paper discusses accurate transverse stress recovery procedures for TSDT isogeometric finite elements. Numerical experiments with quadratic, cubic and quartic elements are presented and obtained results are compared to other available ones