487 research outputs found

    An anatomical investigation of rare upper limb neuropathies due to the Struthers’ ligament or arcade: a meta-analysis

    Get PDF
    Background: The Struthers’ ligament (SL) is a fibrous band that originates fromthe supracondylar humeral process and inserts into the medial humeral epicondyle, potentially compressing both the median nerve and brachial artery. The controversial Struthers’ arcade (SA) is a musculotendinous band found in the distal end of the arm that might compress the ulnar nerve. This study aimed to evaluate the pooled prevalence estimate of the SL and SA, and their anatomical features. Materials and methods: A meticulous search of major electronic medical databases was carried out regarding both structures. Applicable articles (and all relevant references) were analysed. Data from the eligible articles was extracted and evaluated. The quality and the potential risk of bias in the included studies were assessed using the AQUA tool. Results: The arcade was reported in 13 studies (510 arms), whereas the ligament in 6 studies (513 arms). The overall pooled prevalence estimate of the ligament was 1.8%, and 52.6% for the arcade. Most frequently, the ulnar nerve was covered by a tendinous arcade (42.2%). In all cases, the ligament inserted into the medial humeral epicondyle, but had various origins. Only 1 study reported compression of the median nerve by the ligament, whilst another contradicted this view. Conclusions: Although the SL is rare, and the SA is a valid anatomical entity (though with a variable presentation), clinically meaningful neurovascular entrapments caused by these structures are infrequent. Nonetheless, a better understanding of each may be beneficial for the best patient outcomes

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    SAXS investigations on organic aerogels

    Full text link

    Atmospheric Profiles at the Southern Pierre Auger Observatory and their Relevance to Air Shower Measurement

    Full text link
    The dependence of atmospheric conditions on altitude and time have to be known at the site of an air shower experiment for accurate reconstruction of extensive air showers and their simulations. The height-profile of atmospheric depth is of particular interest as it enters directly into the reconstruction of longitudinal shower development and of the primary energy and mass of cosmic rays. For the southern part of the Auger Observatory, the atmosphere has been investigated in a number of campaigns with meteorological radio soundings and with continuous measurements of ground-based weather stations. Focussing on atmospheric depth and temperature profiles, temporal variations are described and monthly profiles are developed. Uncertainties of the monthly atmospheres that are currently applied in the Auger reconstruction are discussed.Comment: To be published in Proceedings of 29th International Cosmic Ray Conference (ICRC) 2005, Pune, Indi

    Entropy-induced separation of star polymers in porous media

    Full text link
    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of ff-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)∼r−ag(r) \sim r^{-a}. Applying the field-theoretical renormalization group approach we show in a double expansion in ϵ=4−d\epsilon=4-d and δ=4−a\delta=4-a that there is a range of correlation strengths δ\delta for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3d=3 and different values of the correlation parameter aa the corresponding scaling exponents γf\gamma_f that govern entropic effects. We find that γf−1\gamma_f-1, the deviation of γf\gamma_f from its mean field value is amplified by the disorder once we increase δ\delta beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are: star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.Comment: 14 pages, 7 figure

    First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers

    Get PDF
    We report the first direct measurement of the overall characteristics of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers in the GHz frequency range. Microwave signals have been detected for more than 30 showers with energies above 3*10^16 eV. The observations presented in this Letter are consistent with a mainly forward-directed and polarised emission process in the GHz frequency range. The measurements show that microwave radiation offers a new means of studying air showers at energies above 10^17 eV.Comment: Accepted for publication in PR
    • …
    corecore