42 research outputs found

    Koopman operator-based model reduction for switched-system control of PDEs

    Full text link
    We present a new framework for optimal and feedback control of PDEs using Koopman operator-based reduced order models (K-ROMs). The Koopman operator is a linear but infinite-dimensional operator which describes the dynamics of observables. A numerical approximation of the Koopman operator therefore yields a linear system for the observation of an autonomous dynamical system. In our approach, by introducing a finite number of constant controls, the dynamic control system is transformed into a set of autonomous systems and the corresponding optimal control problem into a switching time optimization problem. This allows us to replace each of these systems by a K-ROM which can be solved orders of magnitude faster. By this approach, a nonlinear infinite-dimensional control problem is transformed into a low-dimensional linear problem. In situations where the Koopman operator can be computed exactly using Extended Dynamic Mode Decomposition (EDMD), the proposed approach yields optimal control inputs. Furthermore, a recent convergence result for EDMD suggests that the approach can be applied to more complex dynamics as well. To illustrate the results, we consider the 1D Burgers equation and the 2D Navier--Stokes equations. The numerical experiments show remarkable performance concerning both solution times and accuracy.Comment: arXiv admin note: text overlap with arXiv:1801.0641

    Tensor-based dynamic mode decomposition

    Full text link
    Dynamic mode decomposition (DMD) is a recently developed tool for the analysis of the behavior of complex dynamical systems. In this paper, we will propose an extension of DMD that exploits low-rank tensor decompositions of potentially high-dimensional data sets to compute the corresponding DMD modes and eigenvalues. The goal is to reduce the computational complexity and also the amount of memory required to store the data in order to mitigate the curse of dimensionality. The efficiency of these tensor-based methods will be illustrated with the aid of several different fluid dynamics problems such as the von K\'arm\'an vortex street and the simulation of two merging vortices

    Multi-Objective Trust-Region Filter Method for Nonlinear Constraints using Inexact Gradients

    Full text link
    In this article, we build on previous work to present an optimization algorithm for nonlinearly constrained multi-objective optimization problems. The algorithm combines a surrogate-assisted derivative-free trust-region approach with the filter method known from single-objective optimization. Instead of the true objective and constraint functions, so-called fully linear models are employed, and we show how to deal with the gradient inexactness in the composite step setting, adapted from single-objective optimization as well. Under standard assumptions, we prove convergence of a subset of iterates to a quasi-stationary point and if constraint qualifications hold, then the limit point is also a KKT-point of the multi-objective problem

    Learning a model is paramount for sample efficiency in reinforcement learning control of PDEs

    Full text link
    The goal of this paper is to make a strong point for the usage of dynamical models when using reinforcement learning (RL) for feedback control of dynamical systems governed by partial differential equations (PDEs). To breach the gap between the immense promises we see in RL and the applicability in complex engineering systems, the main challenges are the massive requirements in terms of the training data, as well as the lack of performance guarantees. We present a solution for the first issue using a data-driven surrogate model in the form of a convolutional LSTM with actuation. We demonstrate that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system. Furthermore, we show that iteratively updating the model is of major importance to avoid biases in the RL training. Detailed ablation studies reveal the most important ingredients of the modeling process. We use the chaotic Kuramoto-Sivashinsky equation do demonstarte our findings
    corecore