7 research outputs found

    Thickness Insensitive Nanocavities for 2D Heterostructures using Photonic Molecules

    Full text link
    Two-dimensional (2D) heterostructures integrated into nanophotonic cavities have emerged as a promising approach towards novel photonic and opto-electronic devices. However, the thickness of the 2D heterostructure has a strong influence on the resonance frequency of the nanocavity. For a single cavity, the resonance frequency shifts approximately linearly with the thickness. Here, we propose to use the inherent non-linearity of the mode coupling to render the cavity mode insensitive to the thickness of the 2D heterostructure. Based on the couple mode theory, we reveal that this goal can be achieved using either a homoatomic molecule with a filtered coupling or heteroatomic molecules. We perform numerical simulations to further demonstrate the robustness of the eigenfrequency in the proposed photonic molecules. Our results render nanophotonic structures insensitive to the thickness of 2D materials, thus owing appealing potential in energy- or detuning-sensitive applications such as cavity quantum electrodynamics

    Probing the Dark Exciton in Monolayer MoS2_2 by Quantum Interference in Second Harmonic Generation Spectroscopy

    Full text link
    We report resonant second harmonic generation (SHG) spectroscopy of an hBN-encapsulated monolayer of MoS2_2. By tuning the energy of the excitation laser, we identify a dark state transition (D) that is blue detuned by +25 meV from the neutral exciton X0^0. We observe a splitting of the SHG spectrum into two distinct peaks and a clear anticrossing between them as the SHG resonance is tuned through the energy of the dark exciton D. This observation is indicative of quantum interference arising from the strong two-photon light-matter interaction. We further probe the incoherent relaxation from the dark state to the bright excitons, including X0^0 and localized excitons LX, by the resonant enhancement of their intensities at the SHG-D resonance. The relaxation of D to bright excitons is strongly suppressed on the bare substrate whilst enabled when the hBN/MoS2_2/hBN heterostructure is integrated in a nanobeam cavity. The relaxation enabled by the cavity is explained by the phonon scattering enhanced by the cavity phononic effects. Our work reveals the two-photon quantum interference with long-lived dark states and enables the control through nanostructuring of the substrate. These results indicate the great potential of dark excitons in 2D-material based nonlinear quantum devices

    Extending the coherence time of spin defects in hBN enables advanced qubit control and quantum sensing

    Full text link
    Spin defects in hexagonal Boron Nitride (hBN) attract increasing interest for quantum technology since they represent optically-addressable qubits in a van der Waals material. In particular, negatively-charged boron vacancy centers (VB{V_B}^-) in hBN have shown promise as sensors of temperature, pressure, and static magnetic fields. However, the short spin coherence time of this defect currently limits its scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by nearly two orders of magnitude, approaching the fundamental T1T_1 relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect electromagnetic signals in the MHz range with sub-Hz resolution. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures

    Thickness insensitive nanocavities for 2D heterostructures using photonic molecules

    No full text
    Two-dimensional (2D) heterostructures integrated into nanophotonic cavities have emerged as a promising approach towards novel photonic and opto-electronic devices. However, the thickness of the 2D heterostructure has a strong influence on the resonance frequency of the nanocavity. For a single cavity, the resonance frequency shifts approximately linearly with the thickness. Here, we propose to use the inherent non-linearity of the mode coupling to render the cavity mode insensitive to the thickness of the 2D heterostructure. Based on the coupled mode theory, we reveal that this goal can be achieved using either a homoatomic molecule with a filtered coupling or heteroatomic molecules. We perform numerical simulations to further demonstrate the robustness of the eigenfrequency in the proposed photonic molecules. Our results render nanophotonic structures insensitive to the thickness of 2D materials, thus owing appealing potential in energy- or detuning-sensitive applications such as cavity quantum electrodynamics

    Sharp-Hook Acupuncture ( Feng Gou Zhen

    No full text
    The Feng Gou Zhen (sharp-hook acupuncture) as a traditional form of ancient acupuncture is said to be particularly effective for managing periarthritis of shoulder. We conducted this randomized controlled trial to evaluate the effectiveness of Feng Gou Zhen as an add-on compared to conventional analgesics for patients with PAS. 132 patients were randomly assigned in a 1 : 1 ratio to either a acupuncture group receiving sharp-hook acupuncture plus acupoint injection with conventional analgesics or a control group. Patients from both groups were evaluated at week 0 (baseline), week 1, and week 4. The primary outcome measure was the change from baseline shoulder pain, measured by Visual Analogue Scale at 7 days after treatment. Secondary outcome measures include the (i) function of shoulder joint and (ii) McGill pain questionnaire. The results showed that patients in acupuncture group had better pain relief and function recovery compared with control group (P<0.05) at 1 week after treatment. Moreover, there were statistical differences between two groups in VAS and shoulder joint function and McGill pain questionnaire at 4 weeks after treatment (P<0.05). Therefore, the sharp-hook acupuncture helps to relieve the pain and restore the shoulder function for patients with periarthritis of shoulder

    High-performance broadband flexible photodetector based on Gd3Fe5O12-assisted double van der Waals heterojunctions

    No full text
    Abstract Flexible photodetectors are fundamental components for developing wearable systems, which can be widely used for medical detection, environmental monitoring and flexible imaging. However, compared with 3D materials, low-dimensional materials have degraded performance, a key challenge for current flexible photodetectors. Here, a high-performance broadband photodetector has been proposed and fabricated. By combining the high mobility of graphene (Gr) with the strong light–matter interactions of single-walled carbon nanotubes (SWCNTs) and molybdenum disulfide (MoS2), the flexible photodetector exhibits a greatly improved photoresponse covering the visible to near-infrared range. Additionally, a thin layer of gadolinium iron garnet (Gd3Fe5O12, GdlG) film is introduced to improve the interface of the double van der Waals heterojunctions to reduce the dark current. The SWCNT/GdIG/Gr/GdIG/MoS2 flexible photodetector exhibits a high photoresponsivity of 47.375 A/W and a high detectivity of 1.952 × 1012 Jones at 450 nm, a high photoresponsivity of 109.311 A/W and a high detectivity of 4.504 × 1012 Jones at 1080 nm, and good mechanical stability at room temperature. This work demonstrates the good capacity of GdIG-assisted double van der Waals heterojunctions on flexible substrates and provides a new solution for constructing high-performance flexible photodetectors

    Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing

    No full text
    Abstract Negatively-charged boron vacancy centers ( VB{{V}_{B}}^{-} V B − ) in hexagonal Boron Nitride (hBN) are attracting increasing interest since they represent optically-addressable qubits in a van der Waals material. In particular, these spin defects have shown promise as sensors for temperature, pressure, and static magnetic fields. However, their short spin coherence time limits their scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by two orders of magnitude, approaching the fundamental T 1 relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect radiofrequency signals with sub-Hz resolution. The corresponding sensitivity is benchmarked against that of state-of-the-art NV-diamond quantum sensors. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures
    corecore