1,699 research outputs found
A thermodynamical fiber bundle model for the fracture of disordered materials
We investigate a disordered version of a thermodynamic fiber bundle model
proposed by Selinger, Wang, Gelbart, and Ben-Shaul a few years ago. For simple
forms of disorder, the model is analytically tractable and displays some new
features. At either constant stress or constant strain, there is a non
monotonic increase of the fraction of broken fibers as a function of
temperature. Moreover, the same values of some macroscopic quantities as stress
and strain may correspond to different microscopic cofigurations, which can be
essential for determining the thermal activation time of the fracture. We argue
that different microscopic states may be characterized by an experimentally
accessible analog of the Edwards-Anderson parameter. At zero temperature, we
recover the behavior of the irreversible fiber bundle model.Comment: 18 pages, 10 figure
Shear stress fluctuations in the granular liquid and solid phases
We report on experimentally observed shear stress fluctuations in both
granular solid and fluid states, showing that they are non-Gaussian at low
shear rates, reflecting the predominance of correlated structures (force
chains) in the solidlike phase, which also exhibit finite rigidity to shear.
Peaks in the rigidity and the stress distribution's skewness indicate that a
change to the force-bearing mechanism occurs at the transition to fluid
behaviour, which, it is shown, can be predicted from the behaviour of the
stress at lower shear rates. In the fluid state stress is Gaussian distributed,
suggesting that the central limit theorem holds. The fibre bundle model with
random load sharing effectively reproduces the stress distribution at the yield
point and also exhibits the exponential stress distribution anticipated from
extant work on stress propagation in granular materials.Comment: 11 pages, 3 figures, latex. Replacement adds journal reference and
addresses referee comment
Inductive learning spatial attention
This paper investigates the automatic induction of spatial attention
from the visual observation of objects manipulated
on a table top. In this work, space is represented in terms of
a novel observer-object relative reference system, named Local
Cardinal System, defined upon the local neighbourhood
of objects on the table. We present results of applying the
proposed methodology on five distinct scenarios involving
the construction of spatial patterns of coloured blocks
Introducing innovative technologies in higher education: An experience in using geographic information systems for the teaching‐learning process
In today's world, new technologies are being used for the teaching‐learning process in the classroom. Their use to support learning can provide significant advantages for the teaching‐learning process and have potential benefits for students, as many of these technologies are a part of the work life of many current professions. The aim of this study is to analyse the use of innovative technologies for engineering and science education after examining the data obtained from students in their learning process and experiences. The study has been focused on computational geographic information systems, which allow access to and management of large volumes of information and data, and on the assessment of this tool as a basis for a suitable methodology to enhance the teaching‐learning process, taking into account the great social impact of big data. The results allow identifying the main advantages, opportunities, and drawbacks of using these technological tools for educational purposes. Finally, a set of initiatives has been proposed to complement the teaching activity and to improve user experience in the educational field.This study was supported by the Spanish Research Agency and the European Regional Development Fund under project CloudDriver4Industry TIN2017‐89266‐R
Failure Processes in Elastic Fiber Bundles
The fiber bundle model describes a collection of elastic fibers under load.
the fibers fail successively and for each failure, the load distribution among
the surviving fibers change. Even though very simple, the model captures the
essentials of failure processes in a large number of materials and settings. We
present here a review of fiber bundle model with different load redistribution
mechanism from the point of view of statistics and statistical physics rather
than materials science, with a focus on concepts such as criticality,
universality and fluctuations. We discuss the fiber bundle model as a tool for
understanding phenomena such as creep, and fatigue, how it is used to describe
the behavior of fiber reinforced composites as well as modelling e.g. network
failure, traffic jams and earthquake dynamics.Comment: This article has been Editorially approved for publication in Reviews
of Modern Physic
Retelling racialized violence, remaking white innocence: the politics of interlocking oppressions in transgender day of remembrance
Transgender Day of Remembrance has become a significant political event among those resisting violence against gender-variant persons. Commemorated in more than 250 locations worldwide, this day honors individuals who were killed due to anti-transgender hatred or prejudice. However, by focusing on transphobia as the definitive cause of violence, this ritual potentially obscures the ways in which hierarchies of race, class, and sexuality constitute such acts. Taking the Transgender Day of Remembrance/Remembering Our Dead project as a case study for considering the politics of memorialization, as well as tracing the narrative history of the Fred F. C. Martinez murder case in Colorado, the author argues that deracialized accounts of violence produce seemingly innocent White witnesses who can consume these spectacles of domination without confronting their own complicity in such acts. The author suggests that remembrance practices require critical rethinking if we are to confront violence in more effective ways. Description from publisher's site: http://caliber.ucpress.net/doi/abs/10.1525/srsp.2008.5.1.2
Control of IBMIR in Neonatal Porcine Islet Xenotransplantation in Baboons
The instant blood-mediated inflammatory reaction (IBMIR) is a major obstacle to the engraftment of intraportal pig islet xenografts in primates. Higher expression of the galactose-α1,3-galactose (αGal) xenoantigen on neonatal islet cell clusters (NICC) than on adult pig islets may provoke a stronger reaction, but this has not been tested in the baboon model. Here, we report that WT pig NICC xenografts triggered profound IBMIR in baboons, with intravascular clotting and graft destruction occurring within hours, which was not prevented by anti-thrombin treatment. In contrast, IBMIR was minimal when recipients were immunosuppressed with a clinically relevant protocol and transplanted with NICC from αGal-deficient pigs transgenic for the human complement regulators CD55 and CD59. These genetically modified (GM) NICC were less susceptible to humoral injury in vitro than WT NICC, inducing significantly less complement activation and thrombin generation when incubated with baboon platelet-poor plasma. Recipients of GM NICC developed a variable anti-pig antibody response, and examination of the grafts 1 month after transplant revealed significant cell-mediated rejection, although scattered insulin-positive cells were still present. Our results indicate that IBMIR can be attenuated in this model, but long-term graft survival may require more effective immunosuppression or further donor genetic modification
Beyond element-wise interactions: identifying complex interactions in biological processes
Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction rate. We call “complex” these types of interaction and propose ways to identify them from time-series observations.
Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of two brain areas and a metabolic reaction.
Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since finding all complex causalities (interactions) is an NP hard problem
Stevin numbers and reality
We explore the potential of Simon Stevin's numbers, obscured by shifting
foundational biases and by 19th century developments in the arithmetisation of
analysis.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1104.0375, arXiv:1108.2885, arXiv:1108.420
- …