683 research outputs found

    Nonlinear thermal control in an N-terminal junction

    Full text link
    We demonstrate control over heat flow in an N-terminal molecular junction. Using simple model Hamiltonians we show that the heat current through two terminals can be tuned, switched, and amplified, by the temperature and coupling parameters of external gating reservoirs. We discuss two models: A fully harmonic system, and a model incorporating anharmonic interactions. For both models the control reservoirs induce thermal fluctuations of the transition elements between molecular vibrational states. We find that a fully harmonic model does not show any controllability, while for an anharmonic system the conduction properties of the junction strongly depend on the parameters of the gates. Realizations of the model system within nanodevices and macromolecules are discussed

    On compatibility and improvement of different quantum state assignments

    Full text link
    When Alice and Bob have different quantum knowledges or state assignments (density operators) for one and the same specific individual system, then the problems of compatibility and pooling arise. The so-called first Brun-Finkelstein-Mermin (BFM) condition for compatibility is reobtained in terms of possessed or sharp (i. e., probability one) properties. The second BFM condition is shown to be generally invalid in an infinite-dimensional state space. An argument leading to a procedure of improvement of one state assifnment on account of the other and vice versa is presented.Comment: 8 page

    Melting and Rippling Phenomenan in Two Dimensional Crystals with localized bonding

    Full text link
    We calculate Root Mean Square (RMS) deviations from equilibrium for atoms in a two dimensional crystal with local (e.g. covalent) bonding between close neighbors. Large scale Monte Carlo calculations are in good agreement with analytical results obtained in the harmonic approximation. When motion is restricted to the plane, we find a slow (logarithmic) increase in fluctuations of the atoms about their equilibrium positions as the crystals are made larger and larger. We take into account fluctuations perpendicular to the lattice plane, manifest as undulating ripples, by examining dual layer systems with coupling between the layers to impart local rigidly (i.e. as in sheets of graphene made stiff by their finite thickness). Surprisingly, we find a rapid divergence with increasing system size in the vertical mean square deviations, independent of the strength of the interplanar coupling. We consider an attractive coupling to a flat substrate, finding that even a weak attraction significantly limits the amplitude and average wavelength of the ripples. We verify our results are generic by examining a variety of distinct geometries, obtaining the same phenomena in each case.Comment: 17 pages, 28 figure

    Screening, Kohn anomaly, Friedel oscillation, and RKKY interaction in bilayer graphene

    Full text link
    We calculate the screening function in bilayer graphene (BLG) both in the intrinsic (undoped) and the extrinsic (doped) regime within random phase approximation, comparing our results with the corresponding single layer graphene (SLG) and the regular two dimensional electron gas (2DEG). We find that the Kohn anomaly is strongly enhanced in BLG. We also discuss the Friedel oscillation and the RKKY interaction, which are associated with the non-analytic behavior of the screening function at q=2kFq=2k_F. We find that the Kohn anomaly, the Friedel oscillation, and the RKKY interaction are all qualitatively different in the BLG compared with the SLG and the 2DEG.Comment: 4 pages, 3 figure

    Damping of Bogoliubov Excitations in Optical Lattices

    Full text link
    Extending recent work to finite temperatures, we calculate the Landau damping of a Bogoliubov excitation in an optical lattice, due to coupling to a thermal cloud of such excitations. For simplicity, we consider a 1D Bose-Hubbard model and restrict ourselves to the first energy band. For energy conservation to be satisfied, the excitations in the collision processes must exhibit ``anomalous dispersion'', analogous to phonons in superfluid 4He^4\rm{He}. This leads to the disappearance of all damping processes when Unc0≥6tU n^{\rm c 0}\ge 6t, where UU is the on-site interaction, tt is the hopping matrix element and nc0(T)n^{\rm c 0}(T) is the number of condensate atoms at a lattice site. This phenomenon also occurs in 2D and 3D optical lattices. The disappearance of Beliaev damping above a threshold wavevector is noted.Comment: 4pages, 5figures, submitted to Phys. Rev. Let

    Application of the coherent state formalism to multiply excited states

    Full text link
    A general expression is obtained for the matrix element of an m-body operator between coherent states constructed from multiple orthogonal coherent boson species. This allows the coherent state formalism to be applied to states possessing an arbitrarily large number of intrinsic excitation quanta. For illustration, the formalism is applied to the two-dimensional vibron model [U(3) model], to calculate the energies of all excited states in the large-N limit.Comment: LaTeX (iopart); 10 pages; to be published in J. Phys.

    Correlation-induced metal insulator transition in a two-channel fermion-boson model

    Full text link
    We investigate charge transport within some background medium by means of an effective lattice model with a novel form of fermion-boson coupling. The bosons describe fluctuations of a correlated background. By analyzing groundstate and spectral properties of this transport model, we show how a metal-insulator quantum phase transition can occur for the half-filled band case. We discuss the evolution of a mass-asymmetric band structure in the insulating phase and establish connections to the Mott and Peierls transition scenarios.Comment: 4 pages, 4 figures, 1 table, revised version accepted for publication in Phys. Rev. Let

    A semi-quantitative scattering theory of amorphous materials

    Full text link
    It is argued that topological disorder in amorphous solids can be described by local strains related to local reference crystals and local rotations. An intuitive localization criterion is formulated from this point of view. The Inverse Participation Ratio and the location of mobility edges in band tails is directly related to the character of the disorder potential in amorphous solid, the coordination number, the transition integral and the nodes of wave functions of the corresponding reference crystal. The dependence of the decay rate of band tails on temperature and static disorder are derived. \textit{Ab initio} simulations on a-Si and experiments on a-Si:H are compared to these predictions.Comment: 4 pages, 2 figures, will be submitted to Phys. Rev. Let

    Fourier's Law: insight from a simple derivation

    Full text link
    The onset of Fourier's law in a one-dimensional quantum system is addressed via a simple model of weakly coupled quantum systems in contact with thermal baths at their edges. Using analytical arguments we show that the crossover from the ballistic (invalid Fourier's law) to diffusive (valid Fourier's law) regimes is characterized by a thermal length-scale, which is directly related to the profile of the local temperature. In the same vein, dephasing is shown to give rise to a classical Fourier's law, similarly to the onset of Ohm's law in mesoscopic conductors.Comment: 4+ pages, references and discussions adde
    • …
    corecore