7 research outputs found

    Design of Variable Damping INS for Ships Based on the Variation of Reference Velocity Error

    No full text
    Schuler oscillation damping is one of the key technologies to improve the long-term precision of inertial navigation systems (INSs). Generally, a ship introduces the reference velocity to work on the external horizontal damping status to avoid the effects caused by maneuvers. However, the navigation accuracy is sensitive to the reference velocity error which will be affected by sea conditions and the ship’s maneuver. It is necessary to adjust the damping status dynamically as the change of the reference velocity error to ensure the accuracy and stability of INS. To address this problem, a novel variable damping system based on the variation of the reference velocity error is designed in this paper. First of all, this proposed method switched the damping status according to the variation of the reference velocity error in a certain period of time based on the principle of window detection. In addition, this paper designed a fuzzy controller to avoid the overshoot caused by the frequent switching of the damping status. What is more, a method of overshoot suppression was applied in this system. Simulation experiments were conducted to validate the theoretical analysis and the effectiveness of this method. Compared with the undamping system, constant damping system, and traditional variable damping system, the simulation results verified that the designed variable damping system can attenuate the system error caused by reference velocity error most effectively, thus improving the navigation accuracy of INS

    Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs

    No full text
    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the g 0 gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions

    Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    No full text
    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs
    corecore