68 research outputs found

    Finite Automata with Generalized Acceptance Criteria

    Get PDF
    We examine the power of nondeterministic finite automata with acceptance of an input word defined by a leaf language, i.e., a condition on the sequence of leaves in the automaton's computation tree. We study leaf languages either taken from one of the classes of the Chomsky hierarchy, or taken from a time- or space-bounded complexity class. We contrast the obtained results with those known for leaf languages for Turing machines and Boolean circuits

    Impact of coordinate rotation on eddy covariance fluxes at complex sites

    Get PDF
    The choice of coordinate system to calculate eddy covariance fluxes becomes particularly relevant at complex measurement sites. The traditional way is to perform double rotation (DR) of the coordinate system i.e., to calculate turbulent fluxes in a coordinate system that is aligned with the flow streamlines within the flux averaging period (e.g., Kaimal and Finnigan, 1994). The second approach, the so-called planar-fitted (PF) coordinate system, averages the flow over a longer period of time, in practice a month or more. The PF method allows to derive an intercept coefficient of the vertical wind speed which can be attributed to the offset of the sonic anemometer or the average vertical flow related to meteorological conditions. We evaluated the variants of the PF methods using data from a variety of sites ranging from complex urban and forest sites to nearly ideal forest and peatland sites. At complex sites, we found that the intercept of the vertical wind speed derived from the PF method is a function of wind direction, time of day and/or stability. The sector-wise PF (SPF) method frequently led to insignificant statistical relationships. We tested a continuous PF (CPF) method where the relationship establishing the coordinate frame was represented as the continuous function in the form of Fourier series. The method enabled to obtain the PF with lower uncertainty as compared to the SPF method, by selecting necessary number of harmonics for each site based on confidence intervals of estimated parameters. Therefore, we recommend to use the CPF method in cases when the number of observations in some wind direction interval is low or the obtained SPF is insignificant due to large variance in measurements. We also showed that significant systematic difference can exist in cumulative turbulent fluxes between the DR and PF methods over a longer period of time. Derived vertical advection of carbon dioxide exhibited large variability with wind direction due to topography at complex sites and therefore, without considering horizontal advection, cannot be used to improve the net ecosystem exchange estimation during nocturnal, low turbulence conditions.Peer reviewe

    Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018

    Get PDF
    The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.Peer reviewe

    Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions

    Get PDF
    Wetland methane (CH4) emissions (FCH4) are important in global carbon budgets and climate change assessments. Currently, FCH4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent FCH4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that FCH4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between FCH4 and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between FCH4 and temperature, suggesting larger FCH4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments. Wetland methane emissions contribute to global warming, and are oversimplified in climate models. Here the authors use eddy covariance measurements from 48 global sites to demonstrate seasonal hysteresis in methane-temperature relationships and suggest the importance of microbial processes.Peer reviewe

    Upscaling Wetland Methane Emissions From the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0):Model Development, Network Assessment, and Budget Comparison

    Get PDF
    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covariance CH4 flux data from 43 freshwater wetland sites in the FLUXNET-CH4 Community Product. Network patterns in site-level annual means and mean seasonal cycles of CH4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash-Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4 emissions of 146 ± 43 TgCH4 y−1 for 2001–2018 which agrees closely with current bottom-up land surface models (102–181 TgCH4 y−1) and overlaps with top-down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4 fluxes has the potential to produce realistic extra-tropical wetland CH4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid-to-arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).</p

    The biophysical climate mitigation potential of boreal peatlands during the growing season

    Get PDF
    Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.Peer reviewe

    Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales

    Get PDF
    While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by similar to 17 +/- 11 days, and lagged air and soil temperature by median values of 8 +/- 16 and 5 +/- 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.Peer reviewe

    Upscaling Wetland Methane Emissions From the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison

    Get PDF
    Wetlands are responsible for 20%-31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covariance CH4 flux data from 43 freshwater wetland sites in the FLUXNET-CH4 Community Product. Network patterns in site-level annual means and mean seasonal cycles of CH4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash-Sutcliffe Efficiency similar to 0.52-0.63 and 0.53). UpCH(4) estimated annual global wetland CH4 emissions of 146 +/- 43 TgCH4 y(-1) for 2001-2018 which agrees closely with current bottom-up land surface models (102-181 TgCH4 y(-1)) and overlaps with top-down atmospheric inversion models (155-200 TgCH4 y -1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4 fluxes has the potential to produce realistic extra-tropical wetland CH4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid-to-arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25 degrees from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ ORNLDAAC/2253).Plain Language Summary Wetlands account for a large share of global methane emissions to the atmosphere, but current estimates vary widely in magnitude (similar to 30% uncertainty on annual global emissions) and spatial distribution, with diverging predictions for tropical rice growing (e.g., Bengal basin), rainforest (e.g., Amazon basin), and floodplain savannah (e.g., Sudd) regions. Wetland methane model estimates could be improved by increased use of land surface methane flux data. Upscaling approaches use flux data collected across globally distributed measurement networks in a machine learning framework to extrapolate fluxes in space and time. Here, we train and evaluate a methane upscaling model (UpCH4) and use it to generate monthly, globally gridded wetland methane emissions estimates for 2001-2018. The UpCH4 model uses only six predictor variables among which temperature is dominant. Global annual methane emissions estimates and associated uncertainty ranges from upscaling fall within state-of-the-art model ensemble estimates from the Global Carbon Project (GCP) methane budget. In some tropical regions, the spatial pattern of UpCH4 emissions diverged from GCP predictions, however, inclusion of flux measurements from additional ground-based sites, together with refined maps of tropical wetlands extent, could reduce these prediction uncertainties

    Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems : a review

    Get PDF
    Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    corecore