5,163 research outputs found

    Optimized thermoelectric properties of Mo_3Sb_(7-x)Te_x with significant phonon scattering by electrons

    Get PDF
    Heavily doped compounds Mo_3Sb_(7−x)Te_x (x = 0, 1.0, 1.4, 1.8) were synthesized by solid state reaction and sintered by spark plasma sintering. Both X-ray diffraction and electron probe microanalysis indicated the maximum solubility of Te was around x = 1.8. The trends in the electrical transport properties can generally be understood using a single parabolic band model, which predicts that the extremely high carrier concentration of Mo_3Sb_7 (~10^(22) cm^(−3)) can be reduced to a nearly optimized level (~2 × 10^(21) cm^(−3)) for thermoelectric figure of merit (zT) by Te-substitution with x = 1.8. The increased lattice thermal conductivity by Te-doping was found to be due to the decreased Umklapp and electron–phonon scattering, according to a Debye model fitting. The thermoelectric figure of merit (zT) monotonously increased with increasing temperature and reached its highest value of about 0.51 at 850 K for the sample with x = 1.8, making these materials competitive with the state-of-the-art thermoelectric SiGe alloys. Evidence of significant electron–phonon scattering is found in the thermal conductivity

    Application of Ultra-high Pressure Processing Technology

    Get PDF
    High pressure processing is an innovation for the traditional food processing and preservation method. Since the method of ultra-high pressure processing (HPP) exerts a very little influence on the covalent bond of food, its influence on the nutrition, taste, and texture of food is minimized. However, HPP food is perishable in long distance transportation and sales process. Since food freshness directly affects the final demand in market, how to use the appropriate strategy to manage commodity stocks effectively during the long time and distance in food transportation and match the supply and demand of HPP food to improve the competitiveness of companies are the challenges faced by HPP food companies in upstream and downstream supply chain. This paper describes of the different features of HPP foods compared to that of traditional processed foods, and analyzes the collaboration of HPP foods supply chain members

    Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin-orbit coupling in an optical lattice

    Get PDF
    We study ultracold bosonic atoms with the synthetic three-dimensional spin-orbit (SO) coupling in a cubic optical lattice. In the superfluidity phase, the lowest energy band exhibits one, two or four pairs of degenerate single-particle ground states depending on the SO-coupling strengths, which can give rise to the condensate states with spin-stripes for the weak atomic interactions. In the deep Mott-insulator regime, the effective spin Hamiltonian of the system combines three-dimensional Heisenberg exchange interactions, anisotropy interactions and Dzyaloshinskii-Moriya interactions. Based on Monte Carlo simulations, we numerically demonstrate that the resulting Hamiltonian with an additional Zeeman field has a rich phase diagram with spiral, stripe, vortex crystal, and especially Skyrmion crystal spin-textures in each xy-plane layer. The obtained Skyrmion crystals can be tunable with square and hexagonal symmetries in a columnar manner along the z axis, and moreover are stable against the inter-layer spin-spin interactions in a large parameter region.Comment: 9 pages, 4 figures; title modified, references and discussions added; accepted by PR

    The Effect of Spatial Gradients in Stellar Mass-to-Light Ratio on Black Hole Mass Measurements

    Get PDF
    We have tested the effect of spatial gradients in stellar mass-to-light ratio (Y) on measurements of black hole masses (MBH) derived from stellar orbit superposition models. Such models construct a static gravitational potential for a galaxy and its central black hole, but typically assume spatially uniform Y. We have modeled three giant elliptical galaxies with gradients alpha = d(log Y)/d(log r) from -0.2 to +0.1. Color and line strength gradients suggest mildly negative alpha in these galaxies. Introducing a negative (positive) gradient in Y increases (decreases) the enclosed stellar mass near the center of the galaxy and leads to systematically smaller (larger) MBH measurements. For models with alpha = -0.2, the best-fit values of MBH are 28%, 27%, and 17% lower than the constant-Y case, in NGC 3842, NGC 6086, and NGC 7768, respectively. For alpha = +0.1, MBH are 14%, 22%, and 17% higher than the constant-Y case for the three respective galaxies. For NGC 3842 and NGC 6086, this bias is comparable to the statistical errors from individual modeling trials. At larger radii, negative (positive) gradients in Y cause the total stellar mass to decrease (increase) and the dark matter fraction within one effective radius to increase (decrease).Comment: 6 pages, 4 figures, 1 table. To appear in ApJ
    • …
    corecore