12 research outputs found

    A Self-Replicating Linear DNA

    Get PDF
    TelN and tos are a unique DNA linearization unit isolated from bacteriophage N15. While being transferable, the TelN cleaving-rejoining activities remained stable to function on tos in both bacterial and mammalian environments. However, TelN contribution in linear plasmid replication in mammalian cells remains unknown. Herein, we investigated the association of TelN in linear tos-containing DNA (tos-DNA) replication in mammalian cells. Additionally, the mammalian origin of replication (ori) that is well-known to initiate the replication event of plasmid vectors was also studied. In doing so, we identified that both TelN and mammalian initiation sites were essential for the replication of linear tos-DNA, determined by using methylation sensitive DpnI/MboI digestion and polymerase chain reaction (PCR) amplification approaches. Furthermore, we engineered the linear tos-DNA to be able to retain in mammalian cells using S/MAR technology. The resulting S/MAR containing tos-DNA was robust for at least 15 days, with (1) continuous tos-DNA replication, (2) correct splicing of gene transcripts, and (3) stable exogenous gene expression that was statistically comparable to the endogenous gene expression level. Understanding the activities of TelN and tos in mammalian cells can potentially provide insights for adapting this simple DNA linearization unit in developing novel genetic engineering tools, especially to the eukaryotic telomere/telomerase study

    Phage N15-Based Vectors for Gene Cloning and Expression in Bacteria and Mammalian Cells

    Get PDF
    Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelNlinearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine

    Genome Engineering of Mammalian Cells using Phage N15 Protelomerase

    No full text
    TelN protelomerase is a multi-functional microbial enzyme that functions only on telomere-occupancy-site (tos) in constructing linear DNA. While TelN-tos-based linear DNA is stably maintained in bacteria, its stability in the mammalian cell remains unclear. The thesis examines TelN’s stable functionalities in human and mouse cells to process and maintain DNA-bearing tos. It was found that TelN’s cut, rejoin and replicating activities are significantly retained in tested cells and impact on linear DNA formation. Overall, the study describes useful methodologies and approaches to investigate the stable native functions of the microbial genetic system to form linear DNA in animal cell environment

    The Effectiveness and Mechanism of Toona sinensis Extract Inhibit Attachment of Pandemic Influenza A (H1N1) Virus

    Get PDF
    TSL-1 is a fraction of the aqueous extract from the tender leaf of Toona sinensis Roem, a nutritious vegetable. The pandemic influenza A (H1N1) virus is a recently described, rapidly contagious respiratory pathogen which can cause acute respiratory distress syndrome (ARDS) and poses a major public health threat. In this study, we found that TSL-1 inhibited viral yields on MDCK plaque formation by pandemic influenza A (H1N1) virus on infected A549 cells with high selectivity index. Meanwhile, TSL-1 also suppressed viral genome loads in infected A549 cells, quantified by qRT-PCR. This study further demonstrated that TSL-1 inhibited pandemic influenza A (H1N1) virus activity through preventing attachment of A549 cells but not penetration. TSL-1 inhibited viral attachment through significant downregulation of adhesion molecules and chemokines (VCAM-1, ICAM-1, E-selectin, IL-8, and fractalkine) compared to Amantadine. Our results suggest that TSL-1 may be used as an alternative treatment and prophylaxis against pandemic influenza A (H1N1) virus

    Phage N15 protelomerase resolves its tos recognition site into hairpin telomeres within mammalian cells

    No full text
    Phage N15 protelomerase (TelN) cleaves double-stranded circular DNA containing a telomerase-occupancy-site (tos) and rejoins the resulting linear-ends to form closed-hairpin-telomeres in Escherichia coli (E. coli). ContinuedTelN expression is essential to support resolution of the linear structure. In mammalian cells, no enzyme withTelN-like activities has been found. In this work, we show that phage TelN, expressed transiently and stably in human and mouse cells, recapitulates its native activities in these exogenous environments. We found TelN to accurately resolve tos-DNA in vitro and in vivo within human and mouse cells into linear DNA-containing terminal telomeres that are resistant to RecBCD degradation, a hallmark of protelomerase processing. In stable cells, TelN activity was detectable for at least 60 days, which suggests the possibility of limited silencing of its expression.Correspondingly, linear plasmid containing a 100 kb human β-globin gene expressed for at least 120 h in non-β-globin-expressing mouse cells with TelN presence. Our results demonstrate TelN is able to cut and heal DNA ashairpin-telomeres within mammalian cells, providing a tool for creating novel structures by DNA resolution in these hosts. The TelN protelomerase may be useful for exploring novel technologies for genome interrogationand chromosome engineering

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally
    corecore