14 research outputs found

    Counting derangements with signed right-to-left minima and excedances

    Full text link
    Recently Alexandersson and Getachew proved some multivariate generalizations of a formula for enumerating signed excedances in derangements. In this paper we first relate their work to a recent continued fraction for permutations and confirm some of their observations. Our second main result is two refinements of their multivariate identities, which clearly explain the meaning of each term in their main formulas. We also explore some similar formulas for permutations of type B.Comment: Advances in Applied Mathematics 152, 10259

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Counting derangements with signed right-to-left minima and excedances

    No full text
    International audienc

    Remote Sensing of Tropical Rainforest Biomass Changes in Hainan Island, China from 2003 to 2018

    No full text
    The largest area of tropical rainforests in China is on Hainan Island, and it is an important part of the world’s tropical rainforests. The structure of the tropical rainforests in Hainan is complex, the biomass density is high, and conducting ground surveys is difficult, costly, and time-consuming. Remote sensing is a good monitoring method for biomass estimation. However, the saturation phenomenon of such data from different satellite sensors results in low forest biomass estimation accuracy in tropical rainforests with high biomass density. Based on environmental information, the biomass of permanent sample plots, and forest age, this study established a tropical rainforest database for Hainan. Forest age and 14 types of environmental information, combined with an enhanced vegetation index (EVI), were introduced to establish a tropical rainforest biomass estimation model for remote sensing that can overcome the saturation phenomenon present when using remote sensing data. The fitting determination coefficient R2 of the model was 0.694. The remote sensing estimate of relative bias was 2.29%, and the relative root mean square error was 35.41%. The tropical rainforest biomass in Hainan Island is mainly distributed in the central mountainous and southern areas. The tropical rainforests in the northern and coastal areas have been severely damaged by tourism and real estate development. Particularly in low-altitude areas, large areas of tropical rainforest have been replaced by economic forests. Furthermore, the tropical rainforest areas in some cities and counties have decreased, affecting the increase in tropical rainforest biomass. On Hainan Island, there were few tropical rainforests in areas with high rainfall. Therefore, afforestation in these areas could maximize the ecological benefits of tropical rainforests. To further strengthen the protection, there is an urgent need to establish a feasible, reliable, and effective tropical rainforest loss assessment system using quantitative scientific methodologies
    corecore