5 research outputs found

    Co-attention Propagation Network for Zero-Shot Video Object Segmentation

    Full text link
    Zero-shot video object segmentation (ZS-VOS) aims to segment foreground objects in a video sequence without prior knowledge of these objects. However, existing ZS-VOS methods often struggle to distinguish between foreground and background or to keep track of the foreground in complex scenarios. The common practice of introducing motion information, such as optical flow, can lead to overreliance on optical flow estimation. To address these challenges, we propose an encoder-decoder-based hierarchical co-attention propagation network (HCPN) capable of tracking and segmenting objects. Specifically, our model is built upon multiple collaborative evolutions of the parallel co-attention module (PCM) and the cross co-attention module (CCM). PCM captures common foreground regions among adjacent appearance and motion features, while CCM further exploits and fuses cross-modal motion features returned by PCM. Our method is progressively trained to achieve hierarchical spatio-temporal feature propagation across the entire video. Experimental results demonstrate that our HCPN outperforms all previous methods on public benchmarks, showcasing its effectiveness for ZS-VOS.Comment: accepted by IEEE Transactions on Image Processin

    Hierarchical Feature Alignment Network for Unsupervised Video Object Segmentation

    Full text link
    Optical flow is an easily conceived and precious cue for advancing unsupervised video object segmentation (UVOS). Most of the previous methods directly extract and fuse the motion and appearance features for segmenting target objects in the UVOS setting. However, optical flow is intrinsically an instantaneous velocity of all pixels among consecutive frames, thus making the motion features not aligned well with the primary objects among the corresponding frames. To solve the above challenge, we propose a concise, practical, and efficient architecture for appearance and motion feature alignment, dubbed hierarchical feature alignment network (HFAN). Specifically, the key merits in HFAN are the sequential Feature AlignMent (FAM) module and the Feature AdaptaTion (FAT) module, which are leveraged for processing the appearance and motion features hierarchically. FAM is capable of aligning both appearance and motion features with the primary object semantic representations, respectively. Further, FAT is explicitly designed for the adaptive fusion of appearance and motion features to achieve a desirable trade-off between cross-modal features. Extensive experiments demonstrate the effectiveness of the proposed HFAN, which reaches a new state-of-the-art performance on DAVIS-16, achieving 88.7 J&F\mathcal{J}\&\mathcal{F} Mean, i.e., a relative improvement of 3.5% over the best published result.Comment: Accepted by ECCV-202

    Spectral Pre-Processing and Multivariate Calibration Methods for the Prediction of Wood Density in Chinese White Poplar by Visible and Near Infrared Spectroscopy

    No full text
    Wood density is a key indicator for tree functionality and end utilization. Appropriate chemometric methods play an important role in the successful prediction of wood density by visible and near infrared (Vis-NIR) spectroscopy. The objective of this study was to select appropriate pre-processing, variable selection and multivariate calibration techniques to improve the prediction accuracy of density in Chinese white poplar (Populus tomentosa carriere) wood. The Vis-NIR spectra were de-noised using four methods (lifting wavelet transform, LWT; wavelet transform, WT; multiplicative scatter correction, MSC; and standard normal variate, SNV), and four variable selection techniques, including successive projections algorithm (SPA), uninformative variables elimination (UVE), competitive adaptive reweighted sampling (CARS) and iteratively retains informative variables (IRIV), were compared to simplify the dimension of the high-dimensional spectral matrix. The non-linear models of generalized regression neural network (GRNN) and support vector machine (SVM) were performed using these selected variables. The results showed that the best prediction was obtained by GRNN models combined with the LWT and CARS method for Chinese white poplar wood density (Rp2 = 0.870; RMSEP = 13 Kg/m3; RPDp = 2.774)

    Spectral Pre-Processing and Multivariate Calibration Methods for the Prediction of Wood Density in Chinese White Poplar by Visible and Near Infrared Spectroscopy

    No full text
    Wood density is a key indicator for tree functionality and end utilization. Appropriate chemometric methods play an important role in the successful prediction of wood density by visible and near infrared (Vis-NIR) spectroscopy. The objective of this study was to select appropriate pre-processing, variable selection and multivariate calibration techniques to improve the prediction accuracy of density in Chinese white poplar (Populus tomentosa carriere) wood. The Vis-NIR spectra were de-noised using four methods (lifting wavelet transform, LWT; wavelet transform, WT; multiplicative scatter correction, MSC; and standard normal variate, SNV), and four variable selection techniques, including successive projections algorithm (SPA), uninformative variables elimination (UVE), competitive adaptive reweighted sampling (CARS) and iteratively retains informative variables (IRIV), were compared to simplify the dimension of the high-dimensional spectral matrix. The non-linear models of generalized regression neural network (GRNN) and support vector machine (SVM) were performed using these selected variables. The results showed that the best prediction was obtained by GRNN models combined with the LWT and CARS method for Chinese white poplar wood density (Rp2 = 0.870; RMSEP = 13 Kg/m3; RPDp = 2.774)
    corecore