35 research outputs found
Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project
International audienceDuring casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements
Nuclear actin aggregation is a hallmark of anti-synthetase syndrome-induced dysimmune myopathy
Objective: To analyze antisynthetase syndrome–associated myositis by modern myopathologic methods and to define its place in the spectrum of idiopathic inflammatory myopathies (IIMs). Methods: Skeletal muscle biopsies from antisynthetase syndrome–associated myositis and other IIMs from different institutions worldwide were analyzed by histopathology, quantitative PCR, and electron microscopy. Results: Myonuclear actin filament inclusions were identified as a unique morphologic hallmark of antisynthetase syndrome–associated myositis. Nuclear actin inclusions were never found in dermatomyositis, polymyositis, sporadic inclusion body myositis, autoimmune necrotizing myopathy associated with signal recognition particle or 3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies, or nonspecific myositis associated with other systemic diseases, harboring myositis-associated autoantibodies, and presenting myofiber necrosis. We show that molecules involved in actin filament formation and actin shuttling mechanisms are altered in antisynthetase syndrome, and may thus be involved in pathologic myonuclear actin aggregation. In addition, we have identified a typical topographic distribution of necrotic myofibers predominantly located at the periphery of muscle fascicles accompanied by inflammation and destruction of the perimysial connective tissue. Conclusion: Antisynthetase syndrome–associated myositis is characterized by distinctive myonuclear actin filament inclusions, including rod formations and a typical necrotizing perimysial myositis. This supports the hypothesis that antisynthetase syndrome–associated myositis is unique and should not be grouped among dermatomyositis, polymyositis, sporadic inclusion body myositis, necrotizing autoimmune myositis, or nonspecific myositis. Classification of evidence: This study provides Class II evidence that for patients with IIMs, the presence of myonuclear actin filament inclusions accurately identifies patients with antisynthetase syndrome–associated myositis (sensitivity 81%, specificity 100%)