79 research outputs found

    Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation.

    Get PDF
    Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients

    Cultivation of Human Corneal Endothelial Cells Isolated from Paired Donor Corneas

    Get PDF
    Consistent expansion of human corneal endothelial cells (hCECs) is critical in the development of tissue engineered endothelial constructs. However, a wide range of complex culture media, developed from different basal media have been reported in the propagation of hCECs, some with more success than others. These results are further confounded by donor-to-donor variability. The aim of this study is to evaluate four culture media in the isolation and propagation of hCECs isolated from a series of paired donor corneas in order to negate donor variability

    Murine Cytomegalovirus Infection of Neural Stem Cells Alters Neurogenesis in the Developing Brain

    Get PDF
    Congenital cytomegalovirus (CMV) brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV) and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs) and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi) cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons

    Aberrant antigenic expression in extranodal NK/T-cell lymphoma: a multi-parameter study from Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extranodal NK/T-cell lymphoma, nasal type (ENKTL) is not common worldwide, but it is the most common T- and NK-cell lymphomas in many Asian countries. Immunophenotypic profiles were studied based on limited series. The authors, therefore, studied on ENKTL according to characterize immunophenotypic profiles as well as the distribution of EBV subtype and LMP-1 gene deletion.</p> <p>Methods</p> <p>By using tissue microarray (TMA), immunohistochemical study and EBV encoded RNA (EBER) in situ hybridization were performed. T-cell receptor (TCR) gene rearrangement, EBV subtyping, and LMP-1 gene deletion were studied on the available cases.</p> <p>Results</p> <p>There were 22 cases eligible for TMA. ENKTL were positive for CD3 (91%), CD5 (9%), CD7 (32%), CD4 (14%), CD56 (82%), TIA-1 (100%), granzyme B (95%), perforin (86%), CD45 (83%), CD30 (75%), Oct2 (25%), and IRF4/MUM1 (33%). None of them was positive for βF1, CD8, or CD57. TCR gene rearrangement was negative in all 18 tested cases. EBV was subtype A in all 15 tested cases, with 87% deleted LMP-1 gene. Cases lacking perforin expression demonstrated a significantly poorer survival outcome (p = 0.008).</p> <p>Conclusions</p> <p>The present study demonstrated TIA-1 and EBER as the two most sensitive markers. There were a few CD3 and/or CD56 negative cases noted. Interestingly, losses of CD45 and/or CD7 were not uncommon while Oct2 and IRF4/MUM1 could be positive in a subset of cases. Based on the present study in conjunction with the literature review, determination of PCR-based TCR gene rearrangement analysis might not be a useful technique for making diagnosis of ENKTL.</p

    Cell-Surface Marker Signatures for the Isolation of Neural Stem Cells, Glia and Neurons Derived from Human Pluripotent Stem Cells

    Get PDF
    Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS).We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo.These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations

    CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD133 is a cell surface marker of haematopoietic stem and progenitor cells. Leukaemia inhibitory factor (LIF), sustains proliferation and not differentiation of embryonic stem cells. We used CD133 to purify adult human retinal cells and aimed to determine what effect LIF had on these cultures and whether they still had the ability to generate neurospheres.</p> <p>Methods</p> <p>Retinal cell suspensions were derived from adult human post-mortem tissue with ethical approval. With magnetic automated cell sorting (MACS) CD133<sup>+ </sup>retinal cells were enriched from post mortem adult human retina. CD133<sup>+ </sup>retinal cell phenotype was analysed by flow cytometry and cultured cells were observed for proliferative capacity, neuropshere generation and differentiation with or without LIF supplementation.</p> <p>Results</p> <p>We demonstrated purification (to 95%) of CD133<sup>+ </sup>cells from adult human postmortem retina. Proliferating cells were identified through BrdU incorporation and expression of the proliferation markers Ki67 and Cyclin D1. CD133<sup>+ </sup>retinal cells differentiated whilst forming neurospheres containing appropriate lineage markers including glia, neurons and photoreceptors. LIF maintained CD133<sup>+ </sup>retinal cells in a proliferative and relatively undifferentiated state (Ki67, Cyclin D1 expression) without significant neurosphere generation. Differentiation whilst forming neurospheres was re-established on LIF withdrawal.</p> <p>Conclusion</p> <p>These data support the evidence that CD133 expression characterises a population of cells within the resident adult human retina which have progenitor cell properties and that their turnover and differentiation is influenced by LIF. This may explain differences in retinal responses observed following disease or injury.</p

    A synthesis of past, current and future research for protection and management of papyrus (Cyperus papyrus L.) wetlands in Africa

    Get PDF
    Papyrus wetlands (dominated by the giant sedge Cyperus papyrus L.) occur throughout eastern, central and southern Africa and are important for biodiversity, for water quality and quantity regulation and for the livelihoods of millions of people. To draw attention to the importance of papyrus wetlands, a special session entitled ‘‘The ecology of livelihoods in papyrus wetlands’’ was organized at the 9th INTECOL Wetlands Conference in Orlando, Florida in June 2012. Papers from the session, combined with additional contributions, were collected in a special issue of Wetlands Ecology and Management. The current paper reviews ecological and hydrological characteristics of papyrus wetlands, summarizes their ecosystem services and sustainable use, provides an overview of papyrus research to date, and looks at policy development for papyrus wetlands. Based on this review, the paper provides a synthesis of research and policy priorities for papyrus wetlands and introduces the contributions in the special issue. Main conclusions are that (1) there is a need for better estimates of the area covered by papyrus wetlands. Limited evidence suggests that the loss of papyrus wetlands is rapid in some areas; (2) there is a need for a better understanding and modelling of the regulating services of papyrus wetlands to support trade-off analysis and improve economic valuation; (3) research on papyrus wetlands should include assessment of all ecosystem services (provisioning, regulating, habitat, cultural) so that trade-offs can be determined as the basis for sustainable management strategies (‘wise use’); (4) more research on the governance, institutional and socio-economic aspects of papyrus wetlands is needed to assist African governments in dealing with the challenges of conserving wetlands in the face of growing food security needs and climate change. The papers in the special issue address a number of these issues

    Xylem Transport of Recently Fixed Carbon within Lupin

    No full text
    corecore