260 research outputs found

    Urinary biomarkers for the detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia

    Get PDF
    Introduction: high-grade prostatic intraepithelial neoplasia (HGPIN) is a recognized precursor stage of PCa. Men who present HGPIN in a first prostate biopsy face years of active surveillance including repeat biopsies. This study aimed to identify non-invasive prognostic biomarkers that differentiate early on between indolent HGPIN cases and those that will transform into actual PCa. Methods: we measured the expression of 21 candidate mRNA biomarkers using quantitative PCR in urine sediment samples from a cohort of 90 patients with initial diagnosis of HGPIN and a posterior follow up of at least two years. Uni- and multivariate statistical analyses were applied to analyze the candidate biomarkers and multiplex models using combinations of these biomarkers. Results: PSMA, PCA3, PSGR, GOLM, KLK3, CDH1, and SPINK1 behavedas predictors for PCa presence in repeat biopsies. Multiplex models outperformed (AUC = 0.81-0.86) the predictive power of single genes, including the FDA-approved PCA3 (AUC = 0.70). With a fixed sensitivity of 95%, the specificity of our multiplex models was of 41-58%, compared to the 30% of PCA3. The PPV of our models (30-38%) was also higher than the PPV of PCA3 (27%), suggesting that benign cases could be more accurately identified. Applying statistical models, we estimated that 33% to 47% of repeat biopsies could be prevented with a multiplex PCR model, representing an easy applicable and significant advantage over the current gold standard in urine sediment. Discussion: using multiplex RTqPCR-based models in urine sediment it is possible to improve the current diagnostic method of choice (PCA3) to differentiate between benign HGPIN and PCa cases

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression

    Get PDF
    Purpose: Human osteosarcoma is a genetically heterogeneous bone malignancy with poor prognosis despite the employment of aggressive chemotherapy regimens. Because druggable driver mutations have not been established, dissecting the interactions between osteosarcoma cells and supporting stroma may provide insights into novel therapeutic targets.Experimental Design: By using a bioluminescent orthotopic xenograft mouse model of osteosarcoma, we evaluated the effect of tumor extracellular vesicle (EV)-educated mesenchymal stem cells (TEMSC) on osteosarcoma progression. Characterization and functional studies were designed to assess the mechanisms underlying MSC education. Independent series of tissue specimens were analyzed to corroborate the preclinical findings, and the composition of patient serum EVs was analyzed after isolation with size-exclusion chromatography.Results: We show that EVs secreted by highly malignant osteosarcoma cells selectively incorporate a membrane-associated form of TGFβ, which induces proinflammatory IL6 production by MSCs. TEMSCs promote tumor growth, accompanied with intratumor STAT3 activation and lung metastasis formation, which was not observed with control MSCs. Importantly, intravenous administration of the anti-IL6 receptor antibody tocilizumab abrogated the tumor-promoting effects of TEMSCs. RNA-seq analysis of human osteosarcoma tissues revealed a distinct TGFβ-induced prometastatic gene signature. Tissue microarray immunostaining indicated active STAT3 signaling in human osteosarcoma, consistent with the observations in TEMSC-treated mice. Finally, we isolated pure populations of EVs from serum and demonstrated that circulating levels of EV-associated TGFβ are increased in osteosarcoma patients.Conclusions: Collectively, our findings suggest that TEMSCs promote osteosarcoma progression and provide the basis for testing IL6- and TGFβ-blocking agents as new therapeutic options for osteosarcoma patients

    Exosomal release of the virus-encoded chemokine receptor US28 contributes to chemokine scavenging

    Get PDF
    The human cytomegalovirus (HCMV)-encoded chemokine receptor US28 contributes to various aspects of the viral life cycle and promotes immune evasion by scavenging chemokines from the microenvironment of HCMV-infected cells. In contrast to the plasma membrane localization of most human chemokine receptors, US28 has a predominant intracellular localization. In this study, we used immunofluorescence and electron microscopy to determine the localization of US28 upon exogenous expression, as well as in HCMV-infected cells. We observed that US28 localizes to late endosomal compartments called multivesicular bodies (MVBs), where it is sorted in intraluminal vesicles. Live-cell total internal reflection fluorescence (TIRF) microscopy revealed that US28-containing MVBs can fuse with the plasma membrane, resulting in the secretion of US28 on exosomes. Exosomal US28 binds the chemokines CX 3CL1 and CCL5, and US28-containing exosomes inhibited the CX 3CL1-CX 3CR1 signaling axis. These findings suggest that exosomal release of US28 contributes to chemokine scavenging and immune evasion by HCMV

    Cancer-ID:Toward Identification of Cancer by Tumor-Derived Extracellular Vesicles in Blood

    Get PDF
    Extracellular vesicles (EVs) have great potential as biomarkers since their composition and concentration in biofluids are disease state dependent and their cargo can contain disease-related information. Large tumor-derived EVs (tdEVs, >1μm) in blood from cancer patients are associated with poor outcome, and changes in their number can be used to monitor therapy effectiveness. Whereas, small tumor-derived EVs (<1μm) are likely to outnumber their larger counterparts, thereby offering better statistical significance, identification and quantification of small tdEVs are more challenging. In the blood of cancer patients, a subpopulation of EVs originate from tumor cells, but these EVs are outnumbered by non-EV particles and EVs from other origin. In the Dutch NWO Perspectief Cancer-ID program, we developed and evaluated detection and characterization techniques to distinguish EVs from non-EV particles and other EVs. Despite low signal amplitudes, we identified characteristics of these small tdEVs that may enable the enumeration of small tdEVs and extract relevant information. The insights obtained from Cancer-ID can help to explore the full potential of tdEVs in the clinic
    • …
    corecore