6 research outputs found

    Safety and technical efficacy of early minimally invasive endoscopy-guided surgery for intracerebral haemorrhage:the Dutch Intracerebral haemorrhage Surgery Trial pilot study

    Get PDF
    Background: Previous randomised controlled trials could not demonstrate that surgical evacuation of intracerebral haemorrhage (ICH) improves functional outcome. Increasing evidence suggests that minimally invasive surgery may be beneficial, in particular when performed early after symptom onset. The aim of this study was to investigate safety and technical efficacy of early minimally invasive endoscopy-guided surgery in patients with spontaneous supratentorial ICH. Methods: The Dutch Intracerebral Haemorrhage Surgery Trial pilot study was a prospective intervention study with blinded outcome assessment in three neurosurgical centres in the Netherlands. We included adult patients with spontaneous supratentorial ICH ≥10mL and National Institute of Health Stroke Scale (NIHSS) score ≥2 for minimally invasive endoscopy-guided surgery within 8 h after symptom onset in addition to medical management. Primary safety outcome was death or increase in NIHSS ≥4 points at 24 h. Secondary safety outcomes were procedure-related serious adverse events (SAEs) within 7 days and death within 30 days. Primary technical efficacy outcome was ICH volume reduction (%) at 24 h. Results: We included 40 patients (median age 61 years; IQR 51–67; 28 men). Median baseline NIHSS was 19.5 (IQR 13.3–22.0) and median ICH volume 47.7mL (IQR 29.4–72.0). Six patients had a primary safety outcome, of whom two already deteriorated before surgery and one died within 24 h. Sixteen other SAEs were reported within 7 days in 11 patients (of whom two patients that already had a primary safety outcome), none device related. In total, four (10%) patients died within 30 days. Median ICH volume reduction at 24 h was 78% (IQR 50–89) and median postoperative ICH volume 10.5mL (IQR 5.1–23.8). Conclusions: Minimally invasive endoscopy-guided surgery within 8 h after symptom onset for supratentorial ICH appears to be safe and can effectively reduce ICH volume. Randomised controlled trials are needed to determine whether this intervention also improves functional outcome. Trial registration: Clinicaltrials.gov : NCT03608423, August 1st, 2018.</p

    Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction

    Get PDF
    BACKGROUND. Because thick-section images (typically 3–5 mm) have low image noise, radiologists typically use them to perform clinical interpretation, although they may additionally refer to thin-section images (typically 0.5–0.625 mm) for problem solving. Deep learning reconstruction (DLR) can yield thin-section images with low noise. OBJECTIVE. The purpose of this study is to compare abdominopelvic CT image quality between thin-section DLR images and thin- and thick-section hybrid iterative reconstruction (HIR) images. METHODS. This retrospective study included 50 patients (31 men and 19 women; median age, 64 years) who underwent abdominopelvic CT between June 15, 2020, and July 29, 2020. Images were reconstructed at 0.5-mm section using DLR and at 0.5-mm and 3.0-mm sections using HIR. Five radiologists independently performed pairwise comparisons (0.5-mm DLR and either 0.5-mm or 3.0-mm HIR) and recorded the preferred image for subjective image quality measures (scale, −2 to 2). The pooled scores of readers were compared with a score of 0 (denoting no preference). Image noise was quantified using the SD of ROIs on regions of homogeneous liver. RESULTS. For comparison of 0.5-mm DLR images and 0.5-mm HIR images, the median pooled score was 2 (indicating a definite preference for DLR) for noise and overall image quality and 1 (denoting a slight preference for DLR) for sharpness and natural appearance. For comparison of 0.5-mm DLR and 3.0-mm HIR, the median pooled score was 1 for the four previously mentioned measures. These assessments were all significantly different (p < .001) from 0. For artifacts, the median pooled score for both comparisons was 0, which was not significant for comparison with 3.0-mm HIR (p = .03) but was significant for comparison with 0.5-mm HIR (p < .001) due to imbalance in scores of 1 (n = 28) and −1 (slight preference for HIR, n = 1). Noise for 0.5-mm DLR was lower by mean differences of 12.8 HU compared with 0.5-mm HIR and 4.4 HU compared with 3.0-mm HIR (both p < .001). CONCLUSION. Thin-section DLR improves subjective image quality and reduces image noise compared with currently used thin- and thick-section HIR, without causing additional artifacts. CLINICAL IMPACT. Although further diagnostic performance studies are warranted, the findings suggest the possibility of replacing current use of both thin- and thick-section HIR with the use of thin-section DLR only during clinical interpretations

    Assessing radiation-induced carotid vasculopathy using ultrasound after unilateral irradiation: a cross-sectional study

    Get PDF
    Background: Increased head and neck cancer (HNC) survival requires attention to long-term treatment sequelae. Irradiated HNC survivors have a higher ischemic stroke risk. However, the pathophysiology of radiation-induced vasculopathy is unclear. Arterial stiffness could be a biomarker. This study examined alterations in intima-media thickness (IMT) and stiffness-related parameters, shear wave (SWV) and pulse wave velocity (PWV), in irradiated compared to control carotids in unilateral irradiated patients. Methods: Twenty-six patients, median 40.5 years, 5–15 years after unilateral irradiation for head and neck neoplasms underwent a bilateral carotid ultrasound using an Aixplorer system with SL18-5 and SL10-2 probes. IMT, SWV, and PWV were assessed in the proximal, mid, and distal common (CCA) and internal carotid artery (ICA). Plaques were characterized with magnetic resonance imaging. Measurements were compared between irradiated and control sides, and radiation dose effects were explored. Results: CCA-IMT was higher in irradiated than control carotids (0.54 [0.50–0.61] vs. 0.50 [0.44–0.54] mm, p = 0.001). For stiffness, only anterior mid-CCA and posterior ICA SWV were significantly higher in the irradiated side. A radiation dose–effect was only (weakly) apparent for PWV (R2: end-systolic = 0.067, begin-systolic = 0.155). Ultrasound measurements had good–excellent intra- and interobserver reproducibility. Plaques had similar characteristics but were more diffuse in the irradiated side. Conclusions: Increased CCA-IMT and SWV in some segments were seen in irradiated carotids. These alterations, even in young patients, mark the need for surveillance of radiation-induced vasculopathy. Trial registration: clinicaltrials.gov (https://clinicaltrials.gov/ct2/show/NCT04257968)

    Merkel Cell Carcinoma: New Trends

    No full text
    Merkel cell carcinoma (MCC) is a rare neuroendocrine tumor of the skin mainly seen in the elderly. Its incidence is rising due to ageing of the population, increased sun exposure, and the use of immunosuppressive medication. Additionally, with the availability of specific immunohistochemical markers, MCC is easier to recognize. Typically, these tumors are rapidly progressive and behave aggressively, emphasizing the need for early detection and prompt diagnostic work-up and start of treatment. In this review, the tumor biology and immunology, current diagnostic and treatment modalities, as well as new and combined therapies for MCC, are discussed. MCC is a very immunogenic tumor which offers good prospects for immunotherapy. Given its rarity, the aggressiveness, and the frail patient population it concerns, MCC should be managed in close collaboration with an experienced multidisciplinary team
    corecore