18 research outputs found

    Estrogen as therapy for breast cancer

    Get PDF
    High-dose estrogen was generally considered the endocrine therapy of choice for postmenopausal women with breast cancer prior to the introduction of tamoxifen. Subsequently, the use of estrogen was largely abandoned. Recent clinical trial data have shown clinically meaningful efficacy for high-dose estrogen even in patients with extensive prior endocrine therapy. Preclinical research has demonstrated that the estrogen dose-response curve for breast cancer cells can be shifted by modification of the estrogen environment. Clinical and laboratory data together provide the basis for developing testable hypotheses of management strategies, with the potential of increasing the value of endocrine therapy in women with breast cancer

    Efficacy and tolerability of high dose "ethinylestradiol" in post-menopausal advanced breast cancer patients heavily pre-treated with endocrine agents

    Get PDF
    BACKGROUND: High dose estrogens (HDEs) were frequently used as endocrine agents prior to the introduction of tamoxifen which carries fewer side effects. Due to the development of resistance to available endocrine agents in almost all women with metastatic breast cancer, interest has renewed in the use of HDEs as yet another endocrine option that may have activity. We report our experience with one of the HDEs ("ethinylestradiol" 1 mg daily) in advanced breast cancer (locally advanced and metastatic) in post-menopausal women who had progressed on multiple endocrine agents. PATIENTS AND METHODS: According to a database of advanced breast cancer patients seen in our Unit since 1998, those who had complete set of information and fulfilled the following criteria were studied: (1) patients in whom further endocrine therapy was deemed appropriate i.e., patients who have had clinical benefit with previous endocrine agents or were not fit or unwilling to receive chemotherapy in the presence of potentially life-threatening visceral metastases; (2) disease was assessable by UICC criteria; (3) were treated with "ethinylestradiol" until they were withdrawn from treatment due to adverse events or disease progression. RESULTS: Twelve patients with a median age of 75.1 years (49.1 – 85 years) were identified. Majority (N = 8) had bony disease. They had ethinylestradiol as 3(rd )to 7(th )line endocrine therapy. One patient (8%) came off treatment early due to hepato-renal syndrome. Clinical benefit (objective response or durable stable disease for ≥ 6 months) was seen in 4 patients (33.3%) with a median duration of response of 10+ (7–36) months. The time to treatment failure was 4 (0.5–36) months. CONCLUSION: Yet unreported, high dose "ethinylestradiol" is another viable therapeutic strategy in heavily pre-treated patients when further endocrine therapy is deemed appropriate. Although it tends to carry more side effects, they may not be comparable to those of other HDEs (such as diethylstilbestrol) or chemotherapy

    Alterations in the insulin-like growth factor system during treatment with diethylstilboestrol in patients with metastatic breast cancer

    Get PDF
    Alterations in the insulin-like growth factor (IGF)-system were evaluated in 16 patients treated with diethylstilboestrol 5 mg 3 times daily. Fasting blood samples were obtained before treatment and after 2 weeks, 1 month and/or 2–3 months on therapy. Insulin-like growth factor (IGF)-I, IGF-II, free IGF-I, IGF-binding protein (IGFBP)-1, IGFBP-2 and IGFBP-3 were measured by radioimmuno-/immunoradiometric-assays. All samples were subjected to Western ligand blotting as well as immunoblotting for IGFBP-3. We observed a significant decrease (percentage of pretreatment levels with 95 confidence intervals of the mean) in IGF-I [2 weeks 63% (49–79); 1 month 56% (44–73); 2–3 months 66% (53–82)], IGF-II [2 weeks 67% (56–80); 1 month 60% (52–68); 2–3 months 64% (55–75)], free IGF-I [2 weeks 29% (19–42); 1 month 25% (18–36); 2–3 months 31% (21–46)], IGFBP-2 [2 weeks 53% (18–156); 1 month 69% (61–78); 2–3 months 66% (57–78)], IGFBP-3 [2 weeks 74% (63–85); 1 month 69% (62–76); 2–3 months 71% (63–80)], as well as IGFBP-3 protease activity [2 weeks 71% (54–95); 1 month 78% (64–94); 2–3 months 71% (54–93)]. Contrary, the plasma levels (percentage of pretreatment levels with 95 confidence intervals of the mean) of IGFBP-1 [2 weeks 250% (127–495); 1 month 173% (138–542); 2–3 months 273% (146–510)] and IGFBP-4 [2 weeks 146% (112–192); 1 month 140% (116–169); 2–3 months 150% (114–198)] increased significantly. While this study confirms previous observations during treatment with oral oestrogens in substitution doses, the reduction in plasma IGF-II, free IGF-I, IGFBP-2 and -3 are all novel findings. A profound decrease in free IGF-I suggests a reduced bioavailability of IGFs from plasma to the tissues. These observations may be of significance to understand the mechanisms of the antitumour effect of diethylstilboestrol in pharmacological doses. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action

    Get PDF
    Due to their favourable tolerability profiles, endocrine therapies have long been considered the treatment of choice for hormone-sensitive metastatic breast cancer. However, the oestrogen agonist effects of the available selective oestrogen receptor modulators, such as tamoxifen, and the development of cross-resistance between endocrine therapies with similar modes of action have led to the need for new treatments that act through different mechanisms. Fulvestrant (‘Faslodex’) is the first of a new type of endocrine treatment – an oestrogen receptor (ER) antagonist that downregulates the ER and has no agonist effects. This article provides an overview of the current understanding of ER signalling and illustrates the unique mode of action of fulvestrant. Preclinical and clinical study data are presented in support of the novel mechanism of action of this new type of ER antagonist

    Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit?

    Get PDF
    The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17β-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-κB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs
    corecore