6,287 research outputs found

    Hall potentiometer in the ballistic regime

    Full text link
    We demonstrate theoretically how a two-dimensional electron gas can be used to probe local potential profiles using the Hall effect. For small magnetic fields, the Hall resistance is inversely proportional to the average potential profile in the Hall cross and is independent of the shape and the position of this profile in the junction. The bend resistance, on the other hand, is much more sensitive on the exact details of the local potential profile in the cross junction.Comment: 3 pages, 4 ps figure

    Resistance effects due to magnetic guiding orbits

    Full text link
    The Hall and magnetoresistance of a two dimensional electron gas subjected to a magnetic field barrier parallel to the current direction is studied as function of the applied perpendicular magnetic field. The recent experimental results of Nogaret {\em et al.} [Phys. Rev. Lett. {\bf 84}, 2231 (2000)] for the magneto- and Hall resistance are explained using a semi-classical theory based on the Landauer-B\"{u}ttiker formula. The observed positive magnetoresistance peak is explained as due to a competition between a decrease of the number of conducting channels as a result of the growing magnetic field, from the fringe field of the ferromagnetic stripe as it becomes magnetized, and the disappearance of snake orbits and the subsequent appearance of cycloidlike orbits.Comment: 7 pages, 7 figure

    Ginzburg-Landau theory and effects of pressure on a two-band superconductor : application to MgB2

    Full text link
    We present a model of pressure effects of a two-band superconductor based on a Ginzburg-Landau free energy with two order parameters. The parameters of the theory are pressure as well as temperature dependent. New pressure effects emerge as a result of the competition between the two bands. The theory then is applied to MgB2. We identify two possible scenaria regarding the fate of the two σ\sigma subbands under pressure, depending on whether or not both subbands are above the Fermi energy at ambient pressure. The splitting of the two subbands is probably caused by the E2g distortion. If only one subband is above the Fermi energy at ambient pressure (scenario I), application of pressure diminishes the splitting and it is possible that the lower subband participates in the superconductivity. The corresponding crossover pressure and Gruneisen parameter are estimated. In the second scenario both bands start above the Fermi energy and they move below it, either by pressure or via the substitution of Mg by Al. In both scenaria, the possibility of electronical topological transition is emphasized. Experimental signatures of both scenaria are presented and existing experiments are discussed in the light of the different physical pictures.Comment: 6 pages; supersedes the first part of cond-mat/0204085 due to new experiment

    Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas

    Full text link
    The quasi-bound and scattered states in a 2DEG subjected to a circular symmetric steplike magnetic profile with zero average magnetic field are studied. We calculate the effect of a random distribution of such identical profiles on the transport properties of a 2DEG. We show that a nonzero Hall resistance can be obtained, although =0=0, and that in some cases it can even change sign as function of the Fermi energy or the magnetic field strength. The Hall and magnetoresistance show pronounced resonances apart from the Landau states of the inner core, corresponding to the so-called quasi-bound snake orbit states.Comment: 7 pages, 8 figure

    Confined magnetic guiding orbit states

    Full text link
    We show how snake-orbit states which run along a magnetic edge can be confined electrically. We consider a two-dimensional electron gas (2DEG) confined into a quantum wire, subjected to a strong perpendicular and steplike magnetic field B/BB/-B. Close to this magnetic step new, spatially confined bound states arise as a result of the lateral confinement and the magnetic field step. The number of states, with energy below the first Landau level, increases as BB becomes stronger or as the wire width becomes larger. These bound states can be understood as an interference between two counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure

    Saddle point states and energy barriers for vortex entrance and exit in superconducting disks and rings

    Full text link
    The transitions between the different vortex states of thin mesoscopic superconducting disks and rings are studied using the non-linear Ginzburg-Landau functional. They are saddle points of the free energy representing the energy barrier which has to be overcome for transition between the different vortex states. In small superconducting disks and rings the saddle point state between two giant vortex states, and in larger systems the saddle point state between a multivortex state and a giant vortex state and between two multivortex states is obtained. The shape and the height of the nucleation barrier is investigated for different disk and ring configurations.Comment: 10 pages, 18 figure

    Dynamics of self-organized driven particles with competing range interaction

    Full text link
    Non-equilibrium self-organized patterns formed by particles interacting through competing range interaction are driven over a substrate by an external force. We show that, with increasing driving force, the pre-existed static patterns evolve into dynamic patterns either via disordered phase or depinned patterns, or via the formation of non-equilibrium stripes. Strikingly, the stripes are formed either in the direction of the driving force or in the transverse direction, depending on the pinning strength. The revealed dynamical patterns are summarized in a dynamical phase diagram.Comment: 8 pages, 11 figure

    Landau levels and oscillator strength in a biased bilayer of graphene

    Full text link
    We obtain analytical expressions for the eigenstates and the Landau level spectrum of biased graphene bilayers in a magnetic field. The calculations are performed in the context of a four-band continuum model and generalize previous approximate results. Solutions are presented for the spectrum as a function of interlayer coupling, the potential difference between the layers and the magnetic field. The explicit expressions allow us to calculate the oscillator strength and the selection rules for electric dipole transitions between the Landau states. Some transitions are significantly shifted in energy relative to those in an unbiased bialyer and exhibit a very different magnetic field dependence.Comment: To appear in Phys. Rev.
    corecore