6,793 research outputs found
Quantum states in a magnetic anti-dot
We study a new system in which electrons in two dimensions are confined by a
non homogeneous magnetic field. The system consists of a heterostructure with
on top of it a superconducting disk. We show that in this system electrons can
be confined into a dot region. This magnetic anti-dot has the interesting
property that the filling of the dot is a discrete function of the magnetic
field. The circulating electron current inside and outside the anti-dot can be
in opposite direction for certain bound states. And those states exhibit a
diamagnetic to paramagnetic transition with increasing magnetic field. The
absorption spectrum consists of many peaks, some of which violate Kohn's
theorem, and which is due to the coupling of the center of mass motion with the
other degrees of freedom.Comment: 6 pages, 12 ps figure
Disordered graphene Josephson junctions
A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method
is used to describe disordered single-layer graphene Josephson junctions.
Scattering by vacancies, ripples or charged impurities is included. We compute
the Josephson current and investigate the nature of multiple Andreev
reflections, which induce bound states appearing as peaks in the density of
states for energies below the superconducting gap. In the presence of single
atom vacancies, we observe a strong suppression of the supercurrent that is a
consequence of strong inter-valley scattering. Although lattice deformations
should not induce inter-valley scattering, we find that the supercurrent is
still suppressed, which is due to the presence of pseudo-magnetic barriers. For
charged impurities, we consider two cases depending on whether the average
doping is zero, i.e. existence of electron-hole puddles, or finite. In both
cases, short range impurities strongly affect the supercurrent, similar to the
vacancies scenario
Tight-binding study of bilayer graphene Josephson junctions
Using highly efficient simulations of the tight-binding Bogoliubov-de Gennes
model we solved self-consistently for the pair correlation and the Josephson
current in a Superconducting-Bilayer graphene-Superconducting Josephson
junction. Different doping levels for the non-superconducting link are
considered in the short and long junction regime. Self-consistent results for
the pair correlation and superconducting current resemble those reported
previously for single layer graphene except in the Dirac point where remarkable
differences in the proximity effect are found as well as a suppression of the
superconducting current in long junction regime. Inversion symmetry is broken
by considering a potential difference between the layers and we found that the
supercurrent can be switched if junction length is larger than the Fermi
length
Partially unzipped carbon nanotubes as magnetic field sensors
The conductance, , through graphene nanoribbons (GNR) connected to a
partially unzipped carbon nanotube (CNT) is studied in the presence of an
external magnetic field applied parallel to the long axis of the tube by means
of non-equilibrium Green's function technique. We consider (z)igzag and
(a)rmchair CNTs that are partially unzipped to form aGNR/zCNT/aGNR or
zGNR/aCNT/zGNR junctions. We find that the inclusion of a longitudinal magnetic
field affects the electronic states only in the CNT region, leading to the
suppression of the conductance at low energies. Unlike previous studies, for
the zGNR/aCNT/zGNR junction in zero field, we find a sharp dip in the
conductance as the energy approaches the Dirac point and we attribute this
non-trivial behavior to the peculiar band dispersion of the constituent
subsystems. We demonstrate that both types of junctions can be used as magnetic
field sensors.Comment: final version to appear in Applied Physics Letter
Tight-binding description of intrinsic superconducting correlations in multilayer graphene
Using highly efficient GPU-based simulations of the tight-binding
Bogoliubov-de Gennes equations we solve self-consistently for the pair
correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by
considering a finite intrinsic s-wave pairing potential. We find that the two
different stacking configurations have opposite bulk/surface behavior for the
order parameter. Surface superconductivity is robust for ABC stacked multilayer
graphene even at very low pairing potentials for which the bulk order parameter
vanishes, in agreement with a recent analytical approach. In contrast, for
Bernal stacked multilayer graphene, we find that the order parameter is always
suppressed at the surface and that there exists a critical value for the
pairing potential below which no superconducting order is achieved. We
considered different doping scenarios and find that homogeneous doping strongly
suppresses surface superconductivity while non-homogeneous field-induced doping
has a much weaker effect on the superconducting order parameter. For multilayer
structures with hybrid stacking (ABC and ABA) we find that when the thickness
of each region is small (few layers), high-temperature surface
superconductivity survives throughout the bulk due to the proximity effect
between ABC/ABA interfaces where the order parameter is enhanced.Comment: 7 page
D- shallow donor near a semiconductor-metal and a semiconductor-dielectric interface
The ground state energy and the extend of the wavefunction of a negatively
charged donor (D-) located near a semiconductor-metal or a
semiconductor-dielectric interface is obtained. We apply the effective mass
approximation and use a variational two-electron wavefunction that takes into
account the influence of all image charges that arise due to the presence of
the interface, as well as the correlation between the two electrons bound to
the donor. For a semiconductor-metal interface, the D- binding energy is
enhanced for donor positions d>1.5a_B (a_B is the effective Bohr radius) due to
the additional attraction of the electrons with their images. When the donor
approaches the interface (i.e. d<1.5a_B) the D- binding energy drops and
eventually it becomes unbound. For a semiconductor-dielectric (or a
semiconductor-vacuum) interface the D- binding energy is reduced for any donor
position as compared to the bulk case and the system becomes rapidly unbound
when the donor approaches the interface.Comment: Submitted to Phys. Rev. B on 19 November 200
Exciton trapping in magnetic wire structures
The lateral magnetic confinement of quasi two-dimensional excitons into wire
like structures is studied. Spin effects are take into account and two
different magnetic field profiles are considered, which experimentally can be
created by the deposition of a ferromagnetic stripe on a semiconductor quantum
well with magnetization parallel or perpendicular to the grown direction of the
well. We find that it is possible to confine excitons into one-dimensional (1D)
traps. We show that the dependence of the confinement energy on the exciton
wave vector, which is related to its free direction of motion along the wire
direction, is very small. Through the application of a background magnetic
field it is possible to move the position of the trapping region towards the
edge of the ferromagnetic stripe or even underneath the stripe. The exact
position of this 1D exciton channel depends on the strength of the background
magnetic field and on the magnetic polarisation direction of the ferromagnetic
film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte
Superconducting transition temperature of Pb nanofilms: Impact of the thickness-dependent oscillations of the phonon mediated electron-electron coupling
To date, several experimental groups reported measurements of the thickness
dependence of T_c of atomically uniform single-crystalline Pb nanofilms. The
reported amplitude of the T_c-oscillations varies significantly from one
experiment to another. Here we propose that the reason for this unresolved
issue is an interplay of the quantum-size variations in the single-electron
density of states with thickness-dependent oscillations in the phonon mediated
electron-electron coupling. Such oscillations in the coupling depend on the
substrate material, the quality of the interface, the protection cover and
other details of the fabrication process, changing from one experiment to
another. This explains why the available data do not exhibit one-voice
consistency about the amplitude of the T_c-oscillations. Our analyses are based
on a numerical solution of the Bogoliubov-de Gennes equations for a
superconducting slab
Wavepacket scattering on graphene edges in the presence of a (pseudo) magnetic field
The scattering of a Gaussian wavepacket in armchair and zigzag graphene edges
is theoretically investigated by numerically solving the time dependent
Schr\"odinger equation for the tight-binding model Hamiltonian. Our theory
allows to investigate scattering in reciprocal space, and depending on the type
of graphene edge we observe scattering within the same valley, or between
different valleys. In the presence of an external magnetic field, the well know
skipping orbits are observed. However, our results demonstrate that in the case
of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an
armchair edge results in a non-propagating edge state.Comment: 8 pages, 7 figure
- …