2,470 research outputs found
An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula
Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events
An improved robot for bridge inspection
This paper presents a significant improvement from the previous submission from the same authors at ISARC 2016. The robot is now equipped with low-cost cameras and a 2D laser scanner which is used to monitor and survey a bridge bearing. The robot is capable of localising by combining a data from a pre-surveyed 3D model of the space with real-time data collection in-situ. Autonomous navigation is also performed using the 2D laser scanner in a mapped environment. The Robot Operating System (ROS) framework is used to integrate data collection and communication for navigation
Planck Observations of M33
We have performed a comprehensive investigation of the global integrated flux
density of M33 from radio to ultraviolet wavelengths, finding that the data
between 100 GHz and 3 THz are accurately described by a single modified
blackbody curve with a dust temperature of = 21.670.30 K
and an effective dust emissivity index of = 1.350.10,
with no indication of an excess of emission at millimeter/sub-millimeter
wavelengths. However, sub-dividing M33 into three radial annuli, we found that
the global emission curve is highly degenerate with the constituent curves
representing the sub-regions of M33. We also found gradients in
and across the disk of M33, with both
quantities decreasing with increasing radius. Comparing the M33 dust emissivity
with that of other Local Group members, we find that M33 resembles the
Magellanic Clouds rather than the larger galaxies, i.e., the Milky Way and M31.
In the Local Group sample, we find a clear correlation between global dust
emissivity and metallicity, with dust emissivity increasing with metallicity. A
major aspect of this analysis is the investigation into the impact of
fluctuations in the Cosmic Microwave Background (CMB) on the integrated flux
density spectrum of M33. We found that failing to account for these CMB
fluctuations would result in a significant over-estimate of
by 5 K and an under-estimate of by 0.4.Comment: Accepted for publication in MNRA
Dark Energy Constraints from Galaxy Cluster Peculiar Velocities
Future multifrequency microwave background experiments with arcminute
resolution and micro-Kelvin temperature sensitivity will be able to detect the
kinetic Sunyaev-Zeldovich (kSZ) effect, providing a way to measure radial
peculiar velocities of massive galaxy clusters. We show that cluster peculiar
velocities have the potential to constrain several dark energy parameters. We
compare three velocity statistics (the distribution of radial velocities, the
mean pairwise streaming velocity, and the velocity correlation function) and
analyze the relative merits of these statistics in constraining dark energy
parameters. Of the three statistics, mean pairwise streaming velocity provides
constraints that are least sensitive to velocity errors: the constraints on
parameters degrades only by a factor of two when the random error is increased
from 100 to 500 km/s. We also compare cluster velocities with other dark energy
probes proposed in the Dark Energy Task Force report. For cluster velocity
measurements with realistic priors, the eventual constraints on the dark energy
density, the dark energy equation of state and its evolution are comparable to
constraints from supernovae measurements, and better than cluster counts and
baryon acoustic oscillations; adding velocity to other dark energy probes
improves constraints on the figure of merit by more than a factor of two. For
upcoming Sunyaev-Zeldovich galaxy cluster surveys, even velocity measurements
with errors as large as 1000 km/s will substantially improve the cosmological
constraints compared to using the cluster number density alone.Comment: 25 pages, 10 figures. Results and conclusions unchanged. Minor
changes to match the accepted version in Physical Review
Demographic Factors Affecting the Adoption of Multiple Value-Added Practices by Oklahoma Cow-Calf Producers
The utilization of marketing programs to enhance feeder calf value has been met with modest success in Oklahoma. Value-added programs are continually promoted as avenues for improving cow-calf profitability, but producer adoption of value-added practices lags in spite of research showing the value of these practices. Identifying producer characteristics that increase their likelihood to adopt value-added practices is critical to developing successful outreach efforts. Results from a survey of Oklahoma producers on value-added practice adoption indicate that multiple demographic variables influence a producer’s likelihood of practice adoption. For Extension specialists, results can help in targeting likely adopters and developing methods to overcome barriers to adoption by producers less likely to adopt.Beef producers, value-added practices, practice adoption, negative binomial regression, Poisson regression, Farm Management, Livestock Production/Industries, Q12, Q16,
The growth of structure in the Szekeres inhomogeneous cosmological models and the matter-dominated era
This study belongs to a series devoted to using Szekeres inhomogeneous models
to develop a theoretical framework where observations can be investigated with
a wider range of possible interpretations. We look here into the growth of
large-scale structure in the models. The Szekeres models are exact solutions to
Einstein's equations that were originally derived with no symmetries. We use a
formulation of the models that is due to Goode and Wainwright, who considered
the models as exact perturbations of an FLRW background. Using the Raychaudhuri
equation, we write for the two classes of the models, exact growth equations in
terms of the under/overdensity and measurable cosmological parameters. The new
equations in the overdensity split into two informative parts. The first part,
while exact, is identical to the growth equation in the usual linearly
perturbed FLRW models, while the second part constitutes exact non-linear
perturbations. We integrate numerically the full exact growth rate equations
for the flat and curved cases. We find that for the matter-dominated era, the
Szekeres growth rate is up to a factor of three to five stronger than the usual
linearly perturbed FLRW cases, reflecting the effect of exact Szekeres
non-linear perturbations. The growth is also stronger than that of the
non-linear spherical collapse model, and the difference between the two
increases with time. This highlights the distinction when we use general
inhomogeneous models where shear and a tidal gravitational field are present
and contribute to the gravitational clustering. Additionally, it is worth
observing that the enhancement of the growth found in the Szekeres models
during the matter-dominated era could suggest a substitute to the argument that
dark matter is needed when using FLRW models to explain the enhanced growth and
resulting large-scale structures that we observe today (abridged)Comment: 18 pages, 4 figures, matches PRD accepted versio
Template fitting of WMAP 7-year data: anomalous dust or flattening synchrotron emission?
Anomalous microwave emission at 20-40 GHz has been detected across our
Galactic sky. It is highly correlated with thermal dust emission and hence it
is thought to be due to spinning dust grains. Alternatively, this emission
could be due to synchrotron radiation with a flattening (hard) spectral index.
We cross-correlate synchrotron, free-free and thermal dust templates with the
WMAP 7-year maps using synchrotron templates at both 408 MHz and 2.3 GHz to
assess the amount of flat synchrotron emission that is present, and the impact
that this has on the correlations with the other components. We find that there
is only a small amount of flattening visible in the synchrotron spectral
indices by 2.3 GHz, of around \Delta \beta ~ 0.05, and that the significant
level of dust-correlated emission in the lowest WMAP bands is largely
unaffected by the choice of synchrotron template, particularly at high
latitudes (it decreases by only ~7 per cent when using 2.3 GHz rather than 408
MHz). This agrees with expectation if the bulk of the anomalous emission is
generated by spinning dust grains.Comment: 11 pages, 6 figures, 6 tables. Published in MNRA
SKA studies of nearby galaxies : star-formation, accretion processes and molecular gas across all environments
Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceThe SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with Jy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.Peer reviewedFinal Published versio
- …