5 research outputs found

    Existence of Solutions to the Bethe Ansatz Equations for the 1D Hubbard Model: Finite Lattice and Thermodynamic Limit

    Full text link
    In this work, we present a proof of the existence of real and ordered solutions to the generalized Bethe Ansatz equations for the one dimensional Hubbard model on a finite lattice, with periodic boundary conditions. The existence of a continuous set of solutions extending from any positive U to the limit of large interaction is also shown. This continuity property, when combined with the proof that the wavefunction obtained with the generalized Bethe Ansatz is normalizable, is relevant to the question of whether or not the solution gives us the ground state of the finite system, as suggested by Lieb and Wu. Lastly, for the absolute ground state at half-filling, we show that the solution converges to a distribution in the thermodynamic limit. This limit distribution satisfies the integral equations that led to the well known solution of the 1D Hubbard model.Comment: 18 page

    Lower bound for the segregation energy in the Falicov-Kimball model

    Full text link
    In this work, a lower bound for the ground state energy of the Falicov-Kimball model for intermediate densities is derived. The explicit derivation is important in the proof of the conjecture of segregation of the two kinds of fermions in the Falicov-Kimball model, for sufficiently large interactions. This bound is given by a bulk term, plus a term proportional to the boundary of the region devoid of classical particles. A detailed proof is presented for density n=1/2, where the coefficient 10^(-13) is obtained for the boundary term, in two dimensions. With suitable modifications the method can also be used to obtain a coefficient for all densities.Comment: 8 pages, 2 figure

    Maternal smoking during pregnancy and birth defects in children: a systematic review with meta-analysis

    Full text link
    corecore