19 research outputs found
Prediction of Incident Heart Failure in General Practice: The Atherosclerosis Risk in Communities (ARIC) Study
A simple and effective heart failure (HF) risk score would facilitate the primary prevention and early diagnosis of HF in general practice. We examined the external validity of existing HF risk scores, optimized a 10-year HF risk function, and examined the incremental value of several biomarkers, including N-terminal pro-brain natriuretic peptide
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Recommended from our members
Heterogeneous burden of lung disease in smokers with borderline airflow obstruction
Abstract Background The identification of smoking-related lung disease in current and former smokers with normal FEV1 is complex, leading to debate regarding using a ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) of less than 0.70 versus the predicted lower limit of normal (LLN) for diagnosis of airflow obstruction. We hypothesized that the discordant group of ever-smokers with FEV1/FVC between the LLN and 0.70 is heterogeneous, and aimed to characterize the burden of smoking-related lung disease in this group. Methods We compared spirometry, chest CT characteristics, and symptoms between 161 ever-smokers in the discordant group and 940 ever-smokers and 190 never-smokers with normal FEV1 and FEV1/FVC > 0.70 in the SPIROMICS cohort. We also estimated sensitivity and specificity for diagnosing objective radiographic evidence of chronic obstructive pulmonary disease (COPD) using different FEV1/FVC criteria thresholds. Results The discordant group had more CT defined emphysema and non-emphysematous gas trapping, lower post-bronchodilator FEV1 and FEF25–75, and higher respiratory medication use compared with the other two groups. Within the discordant group, 44% had radiographic CT evidence of either emphysema or non-emphysematous gas trapping; an FEV1/FVC threshold of 0.70 has greater sensitivity but lower specificity compared with LLN for identifying individuals with CT abnormality. Conclusions Ever-smokers with normal FEV1 and FEV1/FVC  LLN are a heterogeneous group that includes significant numbers of individuals with and without radiographic evidence of smoking-related lung disease. These findings emphasize the limitations of diagnosing COPD based on spirometric criteria alone
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Recommended from our members
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD.
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p < 8 X 10-10) pQTLs in 38 (43%) of blood proteins tested. Most pQTL SNPs were novel with low overlap to eQTL SNPs. The pQTL SNPs explained >10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10-392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort.
BackgroundPresent treatment strategies to stratify exacerbation risk in patients with chronic obstructive pulmonary disease (COPD) rely on a history of two or more events in the previous year. We aimed to understand year to year variability in exacerbations and factors associated with consistent exacerbations over time.MethodsIn this longitudinal, prospective analysis of exacerbations in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort, we analysed patients aged 40-80 years with COPD for whom 3 years of prospective data were available, identified through various means including care at academic and non-academic medical centres, word of mouth, and existing patient registries. Participants were enrolled in the study between Nov 12, 2010, and July 31, 2015. We classified patients according to yearly exacerbation frequency: no exacerbations in any year; one exacerbation in every year during 3 years of follow-up; and those with inconsistent exacerbations (individuals who had both years with exacerbations and years without during the 3 years of follow-up). Participants were characterised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric category (1-4) on the basis of post-bronchodilator FEV1. Stepwise logistic regression was used to compare factors associated with one or more acute exacerbations of COPD every year for 3 years versus no exacerbations in the same timeframe. Additionally, a stepwise zero-inflated negative binomial model was used to assess predictors of exacerbation count during follow-up in all patients with available data. Baseline symptom burden was assessed with the COPD assessment test. This trial is registered with ClinicalTrials.gov, number NCT01969344.Findings2981 patients were enrolled during the study. 1843 patients had COPD, of which 1105 patients had 3 years of complete, prospective follow-up data. 538 (49%) of 1105 patients had at least one acute exacerbation during the 3 years of follow-up, whereas 567 (51%) had none. 82 (7%) of 1105 patients had at least one acute exacerbation each year, whereas only 23 (2%) had two or more acute exacerbations in each year. An inconsistent pattern (both years with and without acute exacerbations) was common (456 [41%] of the group), particularly among GOLD stages 3 and 4 patients (256 [56%] of 456). In logistic regression, consistent acute exacerbations (≥1 event per year for 3 years) were associated with higher baseline symptom burden, previous exacerbations, greater evidence of small airway abnormality on CT, lower interleukin-15 concentrations, and higher interleukin-8 concentrations, than were no acute exacerbations.InterpretationAlthough acute exacerbations are common, the exacerbation status of most individuals varies markedly from year to year. Among patients who had any acute exacerbation over 3 years, very few repeatedly had two or more events per year. In addition to symptoms and history of exacerbations in the year before study enrolment, we identified several novel biomarkers associated with consistent exacerbations, including CT-defined small airway abnormality, and interleukin-15 and interleukin-8 concentrations.FundingNational Institutes of Health, and National Heart, Lung, and Blood Institute
Recommended from our members
Bronchodilator Responsiveness in Tobacco-Exposed People With or Without COPD
BackgroundBronchodilator responsiveness (BDR) in obstructive lung disease varies over time and may be associated with distinct clinical features.Research questionIs consistent BDR over time (always present) differentially associated with obstructive lung disease features relative to inconsistent (sometimes present) or never (never present) BDR in tobacco-exposed people with or without COPD?Study design and methodsWe retrospectively analyzed data from 2,269 tobacco-exposed participants in the Subpopulations and Intermediate Outcome Measures in COPD Study with or without COPD. We used various BDR definitions: change of ≥ 200 mL and ≥ 12% in FEV1 (FEV1-BDR), change in FVC (FVC-BDR), and change in in FEV1, FVC or both (ATS-BDR). Using generalized linear models adjusted for demographics, smoking history, FEV1 % predicted after bronchodilator administration, and number of visits that the participant completed, we assessed the association of BDR group: (1) consistent BDR, (2) inconsistent BDR, and (3) never BDR with asthma, CT scan features, blood eosinophil levels, and FEV1 decline in participants without COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 0) and the entire cohort (participants with or without COPD).ResultsBoth consistent and inconsistent ATS-BDR were associated with asthma history and greater small airways disease (%parametric response mapping functional small airways disease) relative to never ATS-BDR in participants with GOLD stage 0 disease and the entire cohort. We observed similar findings using FEV1-BDR and FVC-BDR definitions. Eosinophils did not vary consistently among BDR groups. Consistent BDR was associated with FEV1 decline over time relative to never BDR in the entire cohort. In participants with GOLD stage 0 disease, both the inconsistent ATS-BDR group (OR, 3.20; 95% CI, 2.21-4.66; P < .001) and consistent ATS-BDR group (OR, 9.48; 95% CI, 3.77-29.12; P < .001) were associated with progression to COPD relative to the never ATS-BDR group.InterpretationDemonstration of BDR, even once, describes an obstructive lung disease phenotype with a history of asthma and greater small airways disease. Consistent demonstration of BDR indicated a high risk of lung function decline over time in the entire cohort and was associated with higher risk of progression to COPD in patients with GOLD stage 0 disease
Summary of pQTLs by measured biomarker.
<p>Summary of pQTLs by measured biomarker.</p