5 research outputs found

    Fabric Impregnation with Shear Thickening Fluid for Ballistic Armor Polymer Composites: An Updated Overview

    No full text
    As destructive power of firearms raises over the years, ballistic armors are in continuous need of enhancement. For soft armors, this improvement is invariably related to the increase of stacked layers of high-strength fiber fabrics, which potentially restrains wearer mobility. A different solution was created in the early 2000s, when a research work proposed a new treatment of the ballistic panels with non-Newtonian colloidal shear thickening fluid (STF), in view of weight decreasing with strength reinforcement and cost-effective production. Since then, databases reveal a surge in publications generally pointing to acceptable features under ballistic impact by exploring different conditions of the materials adopted. As a result, several works have not been covered in recent reviews for a wider discussion of their methodologies and results, which could be a barrier to a deeper understanding of the behavior of STF-impregnated fabrics. Therefore, the present work aims to overview the unexplored state-of-art on the effectiveness of STF addition to high-strength fabrics for ballistic applications to compile achievements regarding the ballistic strength of this novel material through different parameters. From the screened papers, SiO2, Polyethylene glycol (PEG) 200 and 400, and Aramid are extensively being incorporated into the STF/Fabric composites. Besides, parameters such as initial and residual velocity, energy absorbed, ballistic limit, and back face signature are common metrics for a comprehensive analysis of the ballistic performance of the material. The overview also points to a promising application of natural fiber fabrics and auxetic fabrics with STF fluids, as well as the demand for the adoption of new materials and more homogeneous ballistic test parameters. Finally, the work emphasizes that the ballistic application for STF-impregnated fabric based on NIJ standards is feasible for several conditions

    Mechanical Properties, Critical Length, and Interfacial Strength of Seven-Islands-Sedge Fibers (<em>Cyperus malaccensis</em>) for Possible Epoxy Matrix Reinforcement

    No full text
    The growing concern about the limitation of non-renewable resources has brought a focus on the development of environmentally sustainable and biodegradable composite materials. In this context, a trend in the development of natural fibers used as a reinforcement in composites is ever-increasing. In this work, for the first-time, fibers extracted from the seven-islands-sedge plant (Cyperus malaccensis) have been characterized by X-ray diffraction (XRD) to calculate the crystallinity index and the microfibrillar angle (MFA). Also, an evaluation of the ultimate tensile strength by diameter intervals has been investigated and statistically analyzed by both the Weibull method and the analysis of variance (ANOVA). Moreover, the maximum deformation and tensile modulus have been found from the data acquired. Pullout tests have been conducted to investigate the critical length and interfacial strength when sedge fibers, are incorporated into epoxy resin matrix. Microstructure analysis by scanning electron microscopy (SEM) was performed to observe the mechanism responsible for causing rupture of the fiber as well as the effective fiber interfacial adhesion to the epoxy matrix

    Dynamic Mechanical Analysis and Ballistic Performance of Kenaf Fiber-Reinforced Epoxy Composites

    No full text
    Several industry sectors have sought to develop materials that combine lightness, strength and cost-effectiveness. Natural lignocellulosic natural fibers have demonstrated to be efficient in replacing synthetic fibers, owing to several advantages such as costs 50% lower than that of synthetic fibers and promising mechanical specific properties. Polymeric matrix composites that use kenaf fibers as reinforcement have shown strength increases of over 600%. This work aims to evaluate the performance of epoxy matrix composites reinforced with kenaf fibers, by means of dynamic-mechanical analysis (DMA) and ballistic test. Through DMA, it was possible to obtain the curves of storage modulus (E′), loss modulus (E″) and damping factor, Tan δ, of the composites. The variation of E′ displayed an increase from 1540 MPa for the plain epoxy to 6550 MPa for the 30 vol.% kenaf fiber composites, which evidences the increase in viscoelastic stiffness of the composite. The increase in kenaf fiber content induced greater internal friction, resulting in superior E″. The Tan δ was considerably reduced with increasing reinforcement fraction, indicating better interfacial adhesion between the fiber and the matrix. Ballistic tests against 0.22 caliber ammunition revealed similar performance in terms of both residual and limit velocities for plain epoxy and 30 vol.% kenaf fiber composites. These results confirm the use of kenaf fiber as a promising reinforcement of polymer composites for automotive parts and encourage its possible application as a ballistic armor component

    Curaua–Aramid Hybrid Laminated Composites for Impact Applications: Flexural, Charpy Impact and Elastic Properties

    No full text
    Curaua, as a leaf-based natural fiber, appears to be a promising component with aramid fabric reinforcement of hybrid composites. This work deals with the investigation of flexural, impact and elastic properties of non-woven curaua–aramid fabric hybrid epoxy composites. Five configurations of hybrid composites in a curaua non-woven mat with an increasing quantity of layers, up to four layers, were laminated through the conventional hand lay-up method. The proposed configurations were idealized with at least 60 wt% reinforcement in the non-alternating configuration. As a result, it was observed that the flexural strength decreased by 33% and the flexural modulus by 56%. In addition, the energy absorbed in the Charpy impact also decreased in the same proportion as the replaced amount of aramid. Through the impulse excitation technique, it was possible observe that the replacement of the aramid layers with the curaua layers resulted in decreased elastic properties. However, reduction maps revealed proportional advantages in hybridizing the curaua with the aramid fiber. Moreover, the hybrid composite produced an almost continuous and homogeneous material, reducing the possibility of delamination and transverse deformation, which revealed an impact-resistant performance

    Bio-Based Composites for Light Automotive Parts: Statistical Analysis of Mechanical Properties; Effect of Matrix and Alkali Treatment in Sisal Fibers

    No full text
    Composites based on virgin and recycled polypropylene (PP and rPP) reinforced with 15 wt% sisal fibers, with and without alkali treatment, were prepared by compression molding in a mat composed of a three-layer sandwich structure. The sisal was characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The composites were characterized according to physical and mechanical properties. Additionally, a factorial experimental design was used to statistically evaluate the mechanical properties of the composite. The FTIR and XRD indicated the partial removal of amorphous materials from the surface of the sisal after alkali treatment. The composites&rsquo; density results varied from 0.892 to 0.927 g&middot;cm&minus;3, which was in the desirable range for producing lightweight automotive components. A slight decrease in the hardness of the pure rPP and rPP composites in relation to the PP was observed. The water absorption was higher in rPP composites, regardless of the chemical treatment. Moreover, the impact resistance of PP and its composites was higher than the values for rPP. Statistical analysis showed that the alkali treatment was a significant factor for the hardness of the rPP and PP composites, and that the addition of the sisal layer was relevant to improve the impact resistance of the composites
    corecore