311 research outputs found

    Nitric oxide synthase inhibition attenuates cardiac response to hemodilution with viscogenic plasma expander.

    Get PDF
    Background and objectivesIncreased vascular wall shear stress by elevated plasma viscosity significantly enhances the endothelial nitric oxide synthase (eNOS) activity during an acute isovolemic hemodilution. Also the modulation of plasma viscosity has effects on the cardiac function that were revealed if a left ventricular (LV) pressure-volume (PV) measurement was used. The aim of this study was to assess cardiac function responses to nitric oxide synthase (NOS) inhibitors with the presence of an elevated plasma viscosity but a low hematocrit level. Furthermore, systemic parameters were monitored in a murine model.Materials and methodsAs test group five anesthetized hamsters were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), NOS inhibitor, whereas five other hamsters were used as control group without L-NAME infusion. The dosage of L-NAME was 10 mg/kg. An isovolemic hemodilution was performed by 40% of estimated blood volume with 6% w/v dextran 2000 kDa, high viscosity plasma expanders (PEs) with viscosity 6.34 cP. LV function was measured and assessed using a 1.4 Fr PV conductance catheter.ResultsThe study results demonstrated that NOS inhibition prevented the normal cardiac adaptive response after hemodilution. The endsystolic pressure increased 14% after L-NAME infusion and maintained higher than at the baseline after hemodilution, whereas it gradually decreased in the animals without L-NAME infusion. The admission of L-NAME significantly decreased the maximum rate of ventricular pressure rise (+dP/dtmax), stroke volume and cardiac output after hemodilution if compared to the control group (p<0.05).ConclusionThis finding supports the presumption that nitric oxide induced by an increased plasma viscosity with the use of a high viscosity PE plays a major role in the cardiac function during an acute isovolemic hemodilution

    RRx-001, an epigenetic-based radio- and chemosensitizer, has vascular normalizing effects on SCCVII and U87 tumors.

    Get PDF
    BackgroundThe tumor-specific microregional effects of the anticancer agent RRx-001, a novel epigenetic-based radio/chemosensitizer with nitrogen oxide-donating properties in phase II clinical trials, were investigated with whole tissue section quantitative immunohistological staining in mouse SCCVII and human U87 tumors.ResultsSCCVII tumors exhibited regions of intermittent perfusion exemplified by co-localization of vessels with the hypoxia marker pimonidazole commonly occurring throughout the tissue. A moderate increase in perfusion (21 to 28 %) was observed after a bolus dose of the perivascular stain DiOC7(3), however, with the absence of an increase in tissue oxygenation. U87 tumors showed an absence of blood flow over large areas of treated tumors after dosing with RRx-001. However, these areas did not become necrotic and returned to near normal levels after 12 h. No significant change in tumor hypoxia was seen at 90 min or 12 h. For both tumor types, RRx-001 treatment resulted in the loss of perfusion in the large regions of the tumor; however, at the 12-h time point, both tumor types showed an increase in vessel perfusion but no significant decrease in hypoxia.ConclusionsThese data suggest a redistribution of blood flow within the tumor for both tumor types akin to vascular normalization. Differences between the tumors were related to tumor architecture and distribution of alpha-smooth muscle actin (α-SMA). RRx-001 shows promise for short-term blood flow redistribution in tumors with a pericyte- and α-SMA-rich vasculature. Expression of α-SMA in tumor vasculature could therefore be useful for predicting tumor response to RRx-001

    Platelet inhibitory effects of the Phase 3 anticancer and normal tissue cytoprotective agent, RRx-001.

    Get PDF
    The platelet inhibitory effects of the Phase 3 anticancer agent and nitric oxide (NO) donor, RRx-001, (1-bromoacetyl-3,3-dinitroazetidine) were examined ex vivo and compared with the diazeniumdiolate NO donor, diethylenetriamine NONOate (DETA-NONOate), which spontaneously releases nitric oxide in aqueous solution. In the absence of red blood cells and in a dose-dependent manner, DETA-NONOate strongly inhibited platelet aggregation induced by several stimuli (ADP, epinephrine and collagen) whereas RRx-001 only slightly inhibited platelet aggregation under the same conditions in a dose-dependent manner; these antiaggregant effects were blocked when both DETA-NONOate and RRx-001 were co-incubated with carboxy-PTIO (CPTIO 0.01-100 micromol), a widely accepted NO scavenger. However, in the presence of red blood cells from healthy human donors, RRx-001, which binds covalently to haemoglobin (Hb) and catalyses the production of NO from endogenous nitrite, more strongly inhibited the aggregation of platelets than DETA-NONOate in a dose-dependent manner likely because haemoglobin avidly scavenges nitric oxide and reduces its half-life; the RRx-001-mediated platelet inhibitory effect was increased in the presence of nitrite. The results of this study suggest that RRx-001-bound Hb (within RBCs) plays an important role in the bioconversion of NO2- to NO. , which makes RRx-001 a more physiologically relevant inhibitor of platelet aggregation than other nitric oxide donors, whose effects are attenuated in the presence of red blood cells. Therefore, RRx-001-mediated platelet inhibition is a potentially useful therapeutic property, especially in hypercoagulable cancer patients that are at an increased risk of thrombotic complications

    Brief report: RRx-001 is a c-Myc inhibitor that targets cancer stem cells.

    Get PDF
    The goal of anticancer therapy is to selectively eradicate all malignant cells. Unfortunately for the majority of patients with metastatic disease, this goal is consistently thwarted by the nearly inevitable development of therapeutic resistance; the main driver of therapeutic resistance is a minority subpopulation of cancer cells called cancer stem cells (CSCs) whose mitotic quiescence essentially renders them non-eradicable. The Wnt signaling pathway has been widely implicated as a regulator of CSCs and, therefore, its inhibition is thought to result in a reversal of therapeutic resistance via loss of stem cell properties. RRx-001 is a minimally toxic redox-active epi-immunotherapeutic anticancer agent in Phase III clinical trials that sensitizes tumors to radiation and cytotoxic chemotherapies. In this article, as a potential mechanism for its radio- and chemosensitizing activity, we report that RRx-001 targets CD133 + /CD44 + cancer stem cells from three colon cancer cell-lines, HT-29, Caco-2, and HCT116, and inhibits Wnt pathway signalling with downregulation of c-Myc
    corecore