6 research outputs found

    Pore Formation in Aluminum Castings: Theoretical Calculations and the Extrinsic Effect of Entrained Surface Oxide Films

    Get PDF
    Aluminum alloy castings are being integrated increasingly into automotive and aerospace assemblies due to their extraordinary properties, especially high strength-to-density ratio. To produce high quality castings, it is necessary to understand the mechanisms of the formation of defects, specifically pores and inclusion, in aluminum. There have been numerous studies on pore formation during solidification which lead to hot tearing and/or reduction in mechanical properties. However, a comprehensive study that correlates pore formation theory with in situ observations and modeling assumptions from the literature as well as experimental observations in not available. The present study is motivated to fill this gap. An in-depth discussion of pore formation is presented in this study by first reinterpreting in situ observations reported in the literature as well as assumptions commonly made to model pore formation in aluminum castings. The physics of pore formation is reviewed through theoretical fracture pressure calculations based on classical nucleation theory (i) for homogeneous and heterogeneous nucleation, and (ii) with and without dissolved gas, i.e., hydrogen. Based on the fracture pressure for aluminum, critical pore size and corresponding probability of vacancies clustering to form the critical-size pore have been calculated by using thermodynamic data reported in the literature. Calculations show that it is impossible for a pore to nucleate either homogeneously or heterogeneously in aluminum, even with dissolved hydrogen. The formation of pores in aluminum castings can only be explained by inflation of entrained surface oxide films entrained during prior damage to liquid aluminum (bifilms) under reduced pressure and/or with dissolved gas, which involves only growth, avoiding any nucleation problem. This mechanism is consistent with reinterpretations of in situ observations as well as assumptions made in the literature to model pore formation. To determine whether damage to liquid aluminum by entrainment of surface oxides can be observed and measured, Reduced Pressure Tests (RPT) have been conducted by using high quality, continuously cast A356.0 aluminum alloys ingots. Analyses of RPT samples via micro-computer tomography (μ-CT) scanning have demonstrated that number of pores and volume fraction of pore in aluminum casting increased by raising the pouring height (i.e., velocity of the liquid). Moreover, pore size distributions were observed to be lognormal, consistent with the literature. Cross-sections of RPT samples have been investigated via scanning electron microscopy. In all cases, the presence of oxygen was detected inside, around and between the pores. The existence of oxide films inside all pores indicates that oxide films act as initiation sites for pores and hydrogen only assist to growth of pores. For the first time, the pore formation is reconciled with physical metallurgy principles, supported by observations of oxide films in aluminum castings. Results clearly indicate that pores are extrinsic defects and can be eliminated by careful design of the entire melting and casting process

    Pore Formation During Solidification of Aluminum: Reconciliation of Experimental Observations, Modeling Assumptions, and Classical Nucleation Theory

    No full text
    An in-depth discussion of pore formation is presented in this paper by first reinterpreting in situ observations reported in the literature as well as assumptions commonly made to model pore formation in aluminum castings. The physics of pore formation is reviewed through theoretical fracture pressure calculations based on classical nucleation theory for homogeneous and heterogeneous nucleation, with and without dissolved gas, i.e., hydrogen. Based on the fracture pressure for aluminum, critical pore size and the corresponding probability of vacancies clustering to form that size have been calculated using thermodynamic data reported in the literature. Calculations show that it is impossible for a pore to nucleate either homogeneously or heterogeneously in aluminum, even with dissolved hydrogen. The formation of pores in aluminum castings can only be explained by inflation of entrained surface oxide films (bifilms) under reduced pressure and/or with dissolved gas, which involves only growth, avoiding any nucleation problem. This mechanism is consistent with the reinterpretations of in situ observations as well as the assumptions made in the literature to model pore formation

    Quality assessment and lifetime prediction of base metal electrode multilayer ceramic capacitors: Challenges and opportunities

    No full text
    Base metal electrode (BME) multilayer ceramic capacitors (MLCCs) are widely used in aerospace, medical, military, and communication applications, emphasizing the need for high reliability. The ongoing advancements in BaTiO3-based MLCC technology have facilitated further miniaturization and improved capacitive volumetric density for both low and high voltage devices. However, concerns persist regarding infant mortality failures and long-term reliability under higher fields and temperatures. To address these concerns, a comprehensive understanding of the mechanisms underlying insulation resistance degradation is crucial. Furthermore, there is a need to develop effective screening procedures during MLCC production and improve the accuracy of mean time to failure (MTTF) predictions. This article reviews our findings on the effect of the burn-in test, a common quality control process, on the dynamics of oxygen vacancies within BME MLCCs. These findings reveal the burn-in test has a negative impact on the lifetime and reliability of BME MLCCS. Moreover, the limitations of existing lifetime prediction models for BME MLCCs are discussed, emphasizing the need for improved MTTF predictions by employing a physics-based machine learning model to overcome the existing models’ limitations. The article also discusses the new physical-based machine learning model that has been developed. While data limitations remain a challenge, the physics-based machine learning approach offers promising results for MTTF prediction in MLCCs, contributing to improved lifetime predictions. Furthermore, the article acknowledges the limitations of relying solely on MTTF to predict MLCCs’ lifetime and emphasizes the importance of developing comprehensive prediction models that predict the entire distribution of failures

    Quantification of Entrainment Damage in A356 Aluminum Alloy Castings

    No full text
    Aluminum melts sustain damage to its quality when surface oxides are entrained into bulk liquid. To quantify the extent of entrainment damage, four castings were produced in reduced pressure test (RPT) apparatus; one machined out of the continuously cast ingot, and the other three by pouring the metal from a height of 25, 37.5, and 150 mm. Analyses of RPT samples via micro-computer tomography (μ-CT) scanning demonstrated that the number and volume fraction of pores in aluminum casting increased with increasing velocity of the liquid. However, average and maximum pore sizes first increased with velocity, then decreased, indicating that additional kinetic energy of the metal breaks entrained bifilms. The investigation of the cross sections of RPT specimens via scanning electron microscopy and X-ray maps showed that oxygen was present inside, around, and between the pores, providing further evidence that bifilms act as initiation sites for pores. Moreover, there were unopened bifilms near pores, suggesting that entrainment damage is more extensive than what can be ascertained by the pore size measurements

    Improved prediction for failure time of multilayer ceramic capacitors (MLCCs): A physics-based machine learning approach

    No full text
    Multilayer ceramic capacitors (MLCC) play a vital role in electronic systems, and their reliability is of critical importance. The ongoing advancement in MLCC manufacturing has improved capacitive volumetric density for both low and high voltage devices; however, concerns about long-term stability under higher fields and temperatures are always a concern, which impact their reliability and lifespan. Consequently, predicting the mean time to failure (MTTF) for MLCCs remains a challenge due to the limitations of existing models. In this study, we develop a physics-based machine learning approach using the eXtreme Gradient Boosting method to predict the MTTF of X7R MLCCs under various temperature and voltage conditions. We employ a transfer learning framework to improve prediction accuracy for test conditions with limited data and to provide predictions for test conditions where no experimental data exists. We compare our model with the conventional Eyring model (EM) and, more recently, the tipping point model (TPM) in terms of accuracy and performance. Our results show that the machine learning model consistently outperforms both the EM and TPM, demonstrating superior accuracy and stability across different conditions. Our model also exhibits a reliable performance for untested voltage and temperature conditions, making it a promising approach for predicting MTTF in MLCCs

    Pore Formation During Solidification of Aluminum: Reconciliation of Experimental Observations, Modeling Assumptions, and Classical Nucleation Theory

    No full text
    An in-depth discussion of pore formation is presented in this paper by first reinterpreting in situ observations reported in the literature as well as assumptions commonly made to model pore formation in aluminum castings. The physics of pore formation is reviewed through theoretical fracture pressure calculations based on classical nucleation theory for homogeneous and heterogeneous nucleation, with and without dissolved gas, i.e., hydrogen. Based on the fracture pressure for aluminum, critical pore size and the corresponding probability of vacancies clustering to form that size have been calculated using thermodynamic data reported in the literature. Calculations show that it is impossible for a pore to nucleate either homogeneously or heterogeneously in aluminum, even with dissolved hydrogen. The formation of pores in aluminum castings can only be explained by inflation of entrained surface oxide films (bifilms) under reduced pressure and/or with dissolved gas, which involves only growth, avoiding any nucleation problem. This mechanism is consistent with the reinterpretations of in situ observations as well as the assumptions made in the literature to model pore formation
    corecore