663 research outputs found

    Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival

    Get PDF
    BACKGROUND: The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains contentious. METHODS: We employed a well-characterized model of stepwise human mesenchymal stem cell (MSC) transformation and breast cancer cell lines to investigate oxidative stress and the role of Nrf2 during tumorigenesis. The Nrf2 pathway was studied by microarray analyses, qRT-PCR, and western-blotting. To assess the contribution of Nrf2 to transformation, we established tumor xenografts with transformed MSC expressing Nrf2 (n = 6 mice per group). Expression and survival data for Nrf2 in different cancers were obtained from GEO and TCGA databases. All statistical tests were two-sided. RESULTS: We found an accumulation of reactive oxygen species during MSC transformation that correlated with the transcriptional down-regulation of antioxidants and Nrf2-downstream genes. Nrf2 was repressed in transformed MSC and in breast cancer cells via oncogene-induced activation of the RAS/RAF/ERK pathway. Furthermore, restoration of Nrf2 function in transformed cells decreased reactive oxygen species and impaired in vivo tumor growth (P = 0.001) by mechanisms that included sensitization to apoptosis, and a decreased hypoxic/angiogenic response through HIF-1α destabilization and VEGFA repression. Microarray analyses showed down-regulation of Nrf2 in a panel of human tumors and, strikingly, low Nrf2 expression correlated with poorer survival in patients with melanoma (P = 0.0341), kidney (P = 0.0203) and prostate (P = 0.00279) cancers. CONCLUSIONS: Our data indicate that oncogene-induced Nrf2 repression is an adaptive response for certain cancers to acquire a pro-oxidant state that favors cell survival and in vivo tumor growth

    Interplay between geometry and flow distribution in an airway tree

    Full text link
    Uniform fluid flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. This is found by direct numerical simulation of the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure uniform fluid distribution in a tree. This study suggests that any non-uniformity in the air flow distribution in human lungs should be influenced by the respiratory conditions, rest or hard exercise

    Measurement of the critical DNA lesions produced by antibody-directed enzyme prodrug therapy (ADEPT) in vitro, in vivo and in clinical material

    Get PDF
    An antibody-directed enzyme prodrug therapy (ADEPT) system against CEA-positive tumours is currently in phase I clinical trials. It consists of a prodrug, 4-[N,N-bis(2-iodoethyl) amino] phenoxycarbonyl L -glutamic acid (ZD2767P) and a conjugate of the F(ab')2 anti-CEA antibody A5B7 and the bacterial enzyme carboxypeptidase G2 (CPG2). ZD2767P is converted by antibody-targeted CPG2 into an active bifunctional alkylating drug (ZD2767) at the tumour site. The IC 50 value of the prodrug against the human colorectal tumour LS174T cell line was 55 ± 9 μM following a 1 h exposure. In contrast, co-incubation of ZD2767P with CPG2 resulted in 229-fold increase in activity. Using a modified comet assay, DNA interstrand cross links (ISC) were detected within 1 h of ZD2767P + CPG2 treatment and were repaired by 24 h. A clear dose–response was seen between the level of ISC, growth inhibition and ZD2767 concentration. Administration of a therapeutic dose of ZD2767P 72 h after the F(ab′)2 A5B7 conjugate to mice bearing LS147T xenografts resulted in extensive ISC in the tumour after 1 h; repair was seen at 24 h. Tumour biopsies and peripheral lymphocytes were studied in 5 patients on the ADEPT phase I clinical trial. In 4 patients no ISC were detected. These patients also demonstrated poor localization of conjugate and no tumour response was seen. However a significant level of ISC was detected in one tumour biopsy, which also showed evidence of conjugate localization and clinical response. These studies demonstrate the application of the comet assay in the measurement of ISC in vitro and in clinical material and confirm that activation of ZD2767P results in the formation of DNA crosslinks. © 2001 Cancer Research Campaign http://www.bjcancer.co
    • …
    corecore