9 research outputs found

    Autoimmune effector memory T cells: the bad and the good

    No full text
    Immunological memory is a hallmark of adaptive immunity, a defense mechanism endowed to vertebrates during evolution. However, an autoimmune pathogenic role of memory lymphocytes is also emerging with accumulating evidence, despite reasonable skepticism on their existence in a chronic setting of autoimmune damage. It is conceivable that autoimmune memory would be particularly harmful since memory cells would constantly “remember” and attack the body's healthy tissues. It is even more detrimental given the resistance of memory T cells to immunomodulatory therapies. In this review, we focus on self-antigen-reactive CD4(+) effector memory T (T(EM)) cells, surveying the evidence for the role of the T(EM) compartment in autoimmune pathogenesis. We will also discuss the role of T(EM) cells in chronic and acute infectious disease settings and how they compare to their counterparts in autoimmune diseases. With their long-lasting potency, the autoimmune T(EM) cells could also play a critical role in anti-tumor immunity, which may be largely based on their reactivity to self-antigens. Therefore, although autoimmune T(EM) cells are “bad” due to their role in relentless perpetration of tissue damage in autoimmune disease settings, they are unlikely a by-product of industrial development along the modern surge of autoimmune disease prevalence. Rather, they may be a product of evolution for their “good” in clearing damaged host cells in chronic infections and malignant cells in cancer settings

    The future of cancer treatment: immunomodulation, CARs and combination immunotherapy

    No full text

    Treatment of Heparin-Induced ­Thrombocytopenia: An Overview

    No full text

    Pediatric Cancer Immunotherapy: Opportunities and Challenges

    No full text
    corecore