87 research outputs found

    Visit, January 1979

    Get PDF
    https://digitalcommons.fuller.edu/hollywoodfreepaper/1102/thumbnail.jp

    Visit, April 1979

    Get PDF
    https://digitalcommons.fuller.edu/hollywoodfreepaper/1103/thumbnail.jp

    Visit, January 1980

    Get PDF
    https://digitalcommons.fuller.edu/hollywoodfreepaper/1104/thumbnail.jp

    Optical tuning of the diamond Fermi level measured by correlated scanning probe microscopy and quantum defect spectroscopy

    Full text link
    Quantum technologies based on quantum point defects in crystals require control over the defect charge state. Here we tune the charge state of shallow nitrogen-vacancy and silicon-vacancy centers by locally oxidizing a hydrogenated surface with moderate optical excitation and simultaneous spectral monitoring. The loss of conductivity and change in work function due to oxidation are measured in atmosphere using conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM). We correlate these scanning probe measurements with optical spectroscopy of the nitrogen-vacancy and silicon-vacancy centers created via implantation and annealing 15-25 nm beneath the diamond surface. The observed charge state of the defects as a function of optical exposure demonstrates that laser oxidation provides a way to precisely tune the Fermi level over a range of at least 2.00 eV. We also observe a significantly larger oxidation rate for implanted surfaces compared to unimplanted surfaces under ambient conditions. Combined with knowledge of the electron affinity of a surface, these results suggest KPFM is a powerful, high-spatial resolution technique to advance surface Fermi level engineering for charge stabilization of quantum defects

    Superdiffusion in a Model for Diffusion in a Molecularly Crowded Environment

    Full text link
    We present a model for diffusion in a molecularly crowded environment. The model consists of random barriers in percolation network. Random walks in the presence of slowly moving barriers show normal diffusion for long times, but anomalous diffusion at intermediate times. The effective exponents for square distance versus time usually are below one at these intermediate times, but can be also larger than one for high barrier concentrations. Thus we observe sub- as well as super-diffusion in a crowded environment.Comment: 8 pages including 4 figure

    Hybrid Integration of GaP Photonic Crystal Cavities with Silicon-Vacancy Centers in Diamond by Stamp-Transfer

    Full text link
    Optically addressable solid-state defects are emerging as one of the most promising qubit platforms for quantum networks. Maximizing photon-defect interaction by nanophotonic cavity coupling is key to network efficiency. We demonstrate fabrication of gallium phosphide 1-D photonic crystal waveguide cavities on a silicon oxide carrier and subsequent integration with implanted silicon-vacancy (SiV) centers in diamond using a stamp-transfer technique. The stamping process avoids diamond etching and allows fine-tuning of the cavities prior to integration. After transfer to diamond, we measure cavity quality factors (QQ) of up to 8900 and perform resonant excitation of single SiV centers coupled to these cavities. For a cavity with QQ of 4100, we observe a three-fold lifetime reduction on-resonance, corresponding to a maximum potential cooperativity of C=2C = 2. These results indicate promise for high photon-defect interaction in a platform which avoids fabrication of the quantum defect host crystal

    Silicon-lattice-matched boron-doped gallium phosphide: A scalable acousto-optic platform

    Full text link
    The compact size, scalability, and strongly confined fields in integrated photonic devices enable new functionalities in photonic networking and information processing, both classical and quantum. Gallium phosphide (GaP) is a promising material for active integrated photonics due to its high refractive index, wide band gap, strong nonlinear properties, and large acousto-optic figure of merit. In this work we demonstrate that silicon-lattice-matched boron-doped GaP (BGaP), grown at the 12-inch wafer scale, provides similar functionalities as GaP. BGaP optical resonators exhibit intrinsic quality factors exceeding 25,000 and 200,000 at visible and telecom wavelengths respectively. We further demonstrate the electromechanical generation of low-loss acoustic waves and an integrated acousto-optic (AO) modulator. High-resolution spatial and compositional mapping, combined with ab initio calculations indicate two candidates for the excess optical loss in the visible band: the silicon-GaP interface and boron dimers. These results demonstrate the promise of the BGaP material platform for the development of scalable AO technologies at telecom and provide potential pathways toward higher performance at shorter wavelengths
    corecore