29 research outputs found

    Production and Selectivity of Key Fusarubins from Fusarium solani due to Media Composition

    Get PDF
    Natural products display a large structural variation and different uses within a broad spectrum of industries. In this study, we investigate the influence of carbohydrates and nitrogen sources on the production and selectivity of production of four different polyketides produced by Fusarium solani, fusarubin, javanicin, bostrycoidin and anhydrofusarubin. We introduce four different carbohydrates and two types of nitrogen sources. Hereafter, a full factorial design was applied using combinations of three levels of sucrose and three levels of the two types of nitrogen. Each combination displayed different selectivity and production yields for all the compounds of interest. Response surface design was utilized to investigate possible maximum yields for the surrounding combinations of media. It was also shown that the maximum yields were not always the ones illustrating high selectivity, which is an important factor for making purification steps easier. We visualized the production over time for one of the media types, illustrating high yields and selectivity

    Yeast recombinational cloning for heterologous biosynthesis of polyketides: a molecular microbiology laboratory module for undergraduate students

    Get PDF
    Recombinant plasmids are essential tools in molecular biotechnology, and reliable plasmid assembly methods have, therefore, become a prerequisite for the successful cloning and transfer of genes. Among the multitude of available plasmid assembly strategies, in vivo homologous recombinational cloning in yeast has emerged as a cost-effective and relatively simple method. Since we use this method routinely in our group for assembling large plasmids with secondary metabolite gene clusters and for direct heterologous production of polyketides in Saccharomyces cerevisiae, we developed an exercise module for undergraduate students where they would get hands-on experience with these molecular practices. The exercises target several molecular techniques, including PCR, restriction enzyme digestion, and yeast recombinational cloning. The students will learn about plasmid assembly and yeast transformation methods by performing these experiments while inherently acquiring new skills valuable for their subsequent laboratory work or projects. </p

    Speed dating for enzymes! Finding the perfect phosphopantetheinyl transferase partner for your polyketide synthase

    Get PDF
    The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS’s, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-021-01734-9
    corecore