26,859 research outputs found
Dirac model of electronic transport in graphene antidot barriers
In order to use graphene for semiconductor applications, such as transistors
with high on/off ratios, a band gap must be introduced into this otherwise
semimetallic material. A promising method of achieving a band gap is by
introducing nanoscale perforations (antidots) in a periodic pattern, known as a
graphene antidot lattice (GAL). A graphene antidot barrier (GAB) can be made by
introducing a 1D GAL strip in an otherwise pristine sheet of graphene. In this
paper, we will use the Dirac equation (DE) with a spatially varying mass term
to calculate the electronic transport through such structures. Our approach is
much more general than previous attempts to use the Dirac equation to calculate
scattering of Dirac electrons on antidots. The advantage of using the DE is
that the computational time is scale invariant and our method may therefore be
used to calculate properties of arbitrarily large structures. We show that the
results of our Dirac model are in quantitative agreement with tight-binding for
hexagonal antidots with armchair edges. Furthermore, for a wide range of
structures, we verify that a relatively narrow GAB, with only a few antidots in
the unit cell, is sufficient to give rise to a transport gap
Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells.
Glucagon is one of the main regulators of blood glucose levels and dysfunctional stimulus secretion coupling in pancreatic A-cells is believed to be an important factor during development of diabetes. However, regulation of glucagon secretion is poorly understood. Recently it has been shown that Na(+)/glucose co-transporter (SGLT) inhibitors used for the treatment of diabetes increase glucagon levels in man. Here, we show experimentally that the SGLT2 inhibitor dapagliflozin increases glucagon secretion at high glucose levels both in human and mouse islets, but has little effect at low glucose concentrations. Because glucagon secretion is regulated by electrical activity we developed a mathematical model of A-cell electrical activity based on published data from human A-cells. With operating SGLT2, simulated glucose application leads to cell depolarization and inactivation of the voltage-gated ion channels carrying the action potential, and hence to reduce action potential height. According to our model, inhibition of SGLT2 reduces glucose-induced depolarization via electrical mechanisms. We suggest that blocking SGLTs partly relieves glucose suppression of glucagon secretion by allowing full-scale action potentials to develop. Based on our simulations we propose that SGLT2 is a glucose sensor and actively contributes to regulation of glucagon levels in humans which has clinical implications
Electronic and optical properties of graphene antidot lattices: Comparison of Dirac and tight-binding models
The electronic properties of graphene may be changed from semimetallic to
semiconducting by introducing perforations (antidots) in a periodic pattern.
The properties of such graphene antidot lattices (GALs) have previously been
studied using atomistic models, which are very time consuming for large
structures. We present a continuum model that uses the Dirac equation (DE) to
describe the electronic and optical properties of GALs. The advantages of the
Dirac model are that the calculation time does not depend on the size of the
structures and that the results are scalable. In addition, an approximation of
the band gap using the DE is presented. The Dirac model is compared with
nearest-neighbour tight-binding (TB) in order to assess its accuracy. Extended
zigzag regions give rise to localized edge states, whereas armchair edges do
not. We find that the Dirac model is in quantitative agreement with TB for GALs
without edge states, but deviates for antidots with large zigzag regions.Comment: 15 pages, 7 figures. Accepted by Journal of Physics: Condensed matte
Using superlattice potentials to probe long-range magnetic correlations in optical lattices
In Pedersen et al. (2011) we proposed a method to utilize a temporally
dependent superlattice potential to mediate spin-selective transport, and
thereby probe long and short range magnetic correlations in optical lattices.
Specifically this can be used for detecting antiferromagnetic ordering in
repulsive fermionic optical lattice systems, but more generally it can serve as
a means of directly probing correlations among the atoms by measuring the mean
value of an observable, the number of double occupied sites. Here, we provide a
detailed investigation of the physical processes which limit the effectiveness
of this "conveyer belt method". Furthermore we propose a simple ways to improve
the procedure, resulting in an essentially perfect (error-free) probing of the
magnetic correlations. These results shows that suitably constructed
superlattices constitute a promising way of manipulating atoms of different
spin species as well as probing their interactions.Comment: 12 pages, 9 figure
Universal Quantum Computation in a Neutral Atom Decoherence Free Subspace
In this paper, we propose a way to achieve protected universal computation in
a neutral atom quantum computer subject to collective dephasing. Our proposal
relies on the existence of a Decoherence Free Subspace (DFS), resulting from
symmetry properties of the errors. After briefly describing the physical system
and the error model considered, we show how to encode information into the DFS
and build a complete set of safe universal gates. Finally, we provide numerical
simulations for the fidelity of the different gates in the presence of
time-dependent phase errors and discuss their performance and practical
feasibility.Comment: 7 pages, 8 figure
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals
is theoretically studied. Using a scattering-matrix approach and the
Wigner-Smith delay time concept, we show that optical absorbance benefits both
from slow-light phenomena as well as a high filling factor of the energy
residing in the liquid. Utilizing strongly dispersive photonic crystal
structures, we numerically demonstrate how liquid-infiltrated photonic crystals
facilitate enhanced light-matter interactions, by potentially up to an order of
magnitude. The proposed concept provides strong opportunities for improving
existing miniaturized absorbance cells for optical detection in lab-on-a-chip
systems.Comment: Paper accepted for the "Special Issue OWTNM 2007" edited by A.
Lavrinenko and P. J. Robert
Ptychographic X-ray computed tomography of extended colloidal networks in food emulsions
As a main structural level in colloidal food materials, extended colloidal
networks are important for texture and rheology. By obtaining the 3D
microstructure of the network, macroscopic mechanical properties of the
material can be inferred. However, this approach is hampered by the lack of
suitable non-destructive 3D imaging techniques with submicron resolution.
We present results of quantitative ptychographic X-ray computed tomography
applied to a palm kernel oil based oil-in-water emulsion. The measurements were
carried out at ambient pressure and temperature. The 3D structure of the
extended colloidal network of fat globules was obtained with a resolution of
around 300 nm. Through image analysis of the network structure, the fat globule
size distribution was computed and compared to previous findings. In further
support, the reconstructed electron density values were within 4% of reference
values.Comment: 19 pages, 4 figures, to be published in Food Structur
Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices
We suggest a simple experimental method for probing antiferromagnetic spin
correlations of two-component Fermi gases in optical lattices. The method
relies on a spin selective Raman transition to excite atoms of one spin species
to their first excited vibrational mode where the tunneling is large. The
resulting difference in the tunneling dynamics of the two spin species can then
be exploited, to reveal the spin correlations by measuring the number of doubly
occupied lattice sites at a later time. We perform quantum Monte Carlo
simulations of the spin system and solve the optical lattice dynamics
numerically to show how the timed probe can be used to identify
antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure
- …