21,022 research outputs found

    Ballerina - Pirouettes in Search of Gamma Bursts

    Get PDF
    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.Comment: A&AS in press, proceedings of the Workshop "Gamma Ray Bursts in the Afterglow Era" in Rome, November 199

    The Integral Burst Alert System (IBAS)

    Full text link
    We describe the INTEGRAL Burst Alert System (IBAS): the automatic software for the rapid distribution of the coordinates of the Gamma-Ray Bursts detected by INTEGRAL. IBAS is implemented as a ground based system, working on the near-real time telemetry stream. During the first six months of operations, six GRB have been detected in the field of view of the INTEGRAL instruments and localized by IBAS. Positions with an accuracy of a few arcminutes are currently distributed by IBAS to the community for follow-up observations within a few tens of seconds of the event.Comment: 7 pages, latex, 5 figures, Accepted for publication on A&A Special Issue on First Science with INTEGRA

    Femtosecond real-time probing of reactions. IX. Hydrogen-atom transfer

    Get PDF
    The real-time dynamics of hydrogen-atom-transfer processes under collisionless conditions are studied using femtosecond depletion techniques. The experiments focus on the methyl salicylate system, which exhibits ultrafast hydrogen motion between two oxygen atoms due to molecular tautomerization, loosely referred to as intramolecular ''proton'' transfer. To test for tunneling and mass effects on the excited potential surface, we also studied deuterium and methyl-group substitutions. We observe that the motion of the hydrogen, under collisionless conditions, takes place within 60 fs. At longer times, on the picosecond time scale, the hydrogen-transferred form decays with a threshold of 15.5 kJ/mol; this decay behavior was observed up to a total vibrational energy of approximately 7200 cm-1. The observed dynamics provide the global nature of the motion, which takes into account bonding before and after the motion, and the evolution of the wave packet from the initial nonequilibrium state to the transferred form along the O-H-O reaction coordinate. The vibrational periods (2pi/omega) of the relevant modes range from 13 fs (the OH stretch) to 190 fs (the low-frequency distortion) and the motion involves (in part) these coordinates. The intramolecular vibrational-energy redistribution dynamics at longer times are important to the hydrogen-bond dissociation and to the nonradiative decay of the hydrogen-transferred form

    Universal Quantum Computation in a Neutral Atom Decoherence Free Subspace

    Full text link
    In this paper, we propose a way to achieve protected universal computation in a neutral atom quantum computer subject to collective dephasing. Our proposal relies on the existence of a Decoherence Free Subspace (DFS), resulting from symmetry properties of the errors. After briefly describing the physical system and the error model considered, we show how to encode information into the DFS and build a complete set of safe universal gates. Finally, we provide numerical simulations for the fidelity of the different gates in the presence of time-dependent phase errors and discuss their performance and practical feasibility.Comment: 7 pages, 8 figure

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    Full text link
    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light-matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized absorbance cells for optical detection in lab-on-a-chip systems.Comment: Paper accepted for the "Special Issue OWTNM 2007" edited by A. Lavrinenko and P. J. Robert

    Trees with Given Stability Number and Minimum Number of Stable Sets

    Full text link
    We study the structure of trees minimizing their number of stable sets for given order nn and stability number α\alpha. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n−αn-\alpha stars, each of size ⌈n−1n−α⌉\lceil \frac{n-1}{n-\alpha} \rceil or ⌊n−1n−α⌋\lfloor \frac{n-1}{n-\alpha}\rfloor, so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate
    • 

    corecore