124 research outputs found

    Modelling chemistry and biology after implantation of a drug-eluting stent. Part I: Drug transport

    Get PDF
    Drug-eluting stents have been used widely to prevent restenosis of arteries following percutaneous balloon angioplasty. Mathematical modelling plays an important role in optimising the design of these stents to maximise their efficiency. When designing a drug-eluting stent system, we expect to have a sufficient amount of drug being released into the artery wall for a sufficient period to prevent restenosis. In this paper, a simple model is considered to provide an elementary description of drug release into artery tissue from an implanted stent. From the model, we identified a parameter regime to optimise the system when preparing the polymer coating. The model provides some useful order of magnitude estimates for the key quantities of interest. From the model, we can identify the time scales over which the drug traverses the artery wall and empties from the polymer coating, as well as obtain approximate formulae for the total amount of drug in the artery tissue and the fraction of drug that has released from the polymer. The model was evaluated by comparing to in-vivo experimental data and good agreement was found

    Steroid therapy and outcome of parapneumonic pleural effusions (STOPPE): Study protocol for a multicenter, double-blinded, placebo-controlled randomized clinical trial

    Get PDF
    BACKGROUND: Community-acquired pneumonia (CAP) is a major global disease. Parapneumonic effusions often complicate CAP and range from uninfected (simple) to infected (complicated) parapneumonic effusions and empyema (pus). CAP patients who have a pleural effusion at presentation are more likely to require hospitalization, have a longer length of stay and higher mortality than those without an effusion. Conventional management of pleural infection, with antibiotics and chest tube drainage, fails in about 30% of cases. Several randomized controlled trials (RCT) have evaluated the use of corticosteroids in CAP and demonstrated some potential benefits. Importantly, steroid use in pneumonia has an acceptable safety profile with no adverse impact on mortality. A RCT focused on pediatric patients with pneumonia and a parapneumonic effusion demonstrated shorter time to recovery. The effects of corticosteroid use on clinical outcomes in adults with parapneumonic effusions have not been tested. We hypothesize that parapneumonic effusions develop from an exaggerated pleural inflammatory response. Treatment with systemic steroids may dampen the inflammation and lead to improved clinical outcomes. The steroid therapy and outcome of parapneumonic pleural effusions (STOPPE) trial will assess the efficacy and safety of systemic corticosteroid as an adjunct therapy in adult patients with CAP and pleural effusions. METHODS: STOPPE is a pilot multicenter, double-blinded, placebo-controlled RCT that will randomize 80 patients with parapneumonic effusions (2:1) to intravenous dexamethasone or placebo, administered twice daily for 48 hours. This exploratory study will capture a wide range of clinically relevant endpoints which have been used in clinical trials of pneumonia and/or pleural infection; including, but not limited to: time to clinical stability, inflammatory markers, quality of life, length of hospital stay, proportion of patients requiring escalation of care (thoracostomy or thoracoscopy), and mortality. Safety will be assessed by monitoring for the incidence of adverse events during the study. DISCUSSION: STOPPE is the first trial to assess the efficacy and safety profile of systemic corticosteroids in adults with CAP and pleural effusions. This will inform future studies on feasibility and appropriate trial endpoints. TRIAL REGISTRATION: ACTRN1261800094720
    corecore