2 research outputs found
Morphology and Magnetic Properties of Sulfonated Poly[styrene-(ethylene/butylene)-styrene]/Iron Oxide Composites
α-Fe2O3 structures were initiated in the sulfonated polystyrene block domains of poly[styrene–(ethylene/butylene)–styrene] (SEBS) block copolymers via a domain-targeted in-situ chemical precipitation method. The crystal structure of these particles was determined using wide-angle X-ray diffraction and selected area electron diffraction using a transmission electron microscope (TEM). TEM revealed that for less sulfonated SEBS (10 mole%), nanoparticles were aggregated with aggregate size range of 100–150 nm whereas for high sulfonation (16 and 20 mole% sSEBS) there were needle-like structures with length and width of 200–250 nm and 50 nm, respectively. Dynamic mechanical analyses suggest that initial iron oxide nanoparticle growth takes place in the sulfonated polystyrene block domains. The magnetic properties of these nanocomposites were probed with a superconducting quantum interference device magnetometer at 5 and 150 K as well as with an alternating gradient magnetometer at 300 K. The materials exhibited superparamagnetism at 150 K and 300 K and ferrimagnetism at 5 K
Macromolecular Dynamics of Sulfonated Poly(styrene-b-ethylene-ran-butylene-b-styrene) Block Copolymers by Broadband Dielectric Spectroscopy
Macromolecular dynamics of sulfonated poly(styrene-b-ethylene-ran-butylene-b-styrene) (sSEBS) triblock copolymers were investigated using broadband dielectric spectroscopy (BDS). Two main relaxations corresponding to the glass transitions in the EB and S block phases were identified and their temperature dependences were VFT-like. T-g for the S block phase shifted to higher temperature due to restrictions on chain mobility caused by hydrogen bonded SO3H groups. While the EB block phase T-g appeared to remain constant with degree of sulfonation in DMA experiments, it shifted somewhat upward in BDS spectra. A low temperature relaxation beneath the glass transition of the EB block phase was attributed to short range chain motions. The Kramers-Kronig integral transformation was used to calculate conductivity-free loss permittivity spectra from real permittivity spectra to enhance true relaxation peaks. A loss permittivity peak tentatively assigned to relaxation of internal S-EB interfacial polarization was seen at temperatures above the S block phase glass transition, and the temperature dependence of this relaxation was VFT-like. The fragilities of the EB and S block domains in sulfonated SEBS decreased after sulfonation. The temperature dependence of the dc conduction contribution to sSEBS loss spectra also followed VFT-like behavior and S block segmental relaxation time correlated well with conductivity according to the fractional Debye-Stokes-Einstein equation. (C) 2011 Elsevier Ltd. All rights reserved