52 research outputs found
Kikuchi-Fujimoto Disease Associated with Myasthenia Gravis: A Case Report
Kikuchi-Fujimoto disease is a self-limited benign condition of unknown etiology characterized by cervical lymphadenopathy, fever, and leucopenia. An autoimmune hypothesis has been suggested and an association with systemic lupus erythematosus, Sjogren's disease, and antiphospholipid syndrome has been noted. We report a 27-year-old male who presented for evaluation of weakness and he was diagnosed with seropositive generalized myasthenia gravis and underwent a thymectomy. He was stable until five months post-thymectomy, when he developed a high fever associated with nontender cervical lymphadenopathy, chills, and night sweats. Histopathology of a cervical lymph gland biopsy was compatible with Kikuchi-Fujimoto lymphadenitis. He improved spontaneously and was asymptomatic at the followup six months later. Our case expands the association of Kikuchi-Fujimoto disease with autoimmune disorders to include myasthenia gravis
Limb Girdle Muscular Dystrophy due to Digenic Inheritance of DES and CAPN3 Mutations
We report the clinical and genetic analysis of a 63-year-old man with progressive weakness developing over more than 20 years. Prior to his initial visit, he underwent multiple neurological and rheumatological evaluations and was treated for possible inflammatory myopathy. He did not respond to any treatment that was prescribed and was referred to our center for another opinion. He underwent a neurological evaluation, electromyography, magnetic resonance imaging of his legs, and a muscle biopsy. All testing indicated a chronic myopathy without inflammatory features suggesting a genetic myopathy. Whole-exome sequencing testing more than 50 genes known to cause myopathy revealed variants in the COL6A3 (rs144651558), RYR1 (rs143445685), CAPN3 (rs138172448), and DES (rs144901249) genes. We hypothesized that the inheritance pattern could follow a digenic pattern of inheritance. Screening for these polymorphisms in an unaffected sister revealed the presence of all these same variants except for that in the CAPN3 gene. All variants were studied to determine their frequency and if they had been previously reported as mutations. They were also subjected to protein modeling programs, including SIFT, PolyPhen, and MutationTaster. This analysis indicated that the CAPN3 variant c.1663G>A (rs138172448), which results in a p.Val555Ile change, and the DES gene variant c.656C>T (rs144901249), which results in a p.Thr219Ile change, are both predicted to be damaging. These 2 variants were further investigated employing the STRING program that analyzes protein networks and pathways. This analysis provided further support for our hypothesis that these mutations in the CAPN3 and DES genes, through digenic inheritance, are the cause of the myopathy in this patient
An analysis of Methylenetetrahydrofolate reductase and Glutathione S-transferase omega-1 genes as modifiers of the cerebral response to ischemia
<p>Abstract</p> <p>Background</p> <p>Cerebral ischemia involves a series of reactions which ultimately influence the final volume of a brain infarction. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of the cerebral response to ischemia and impact the resultant stroke volume. The final volume of a cerebral infarct is important as it correlates with the morbidity and mortality associated with non-lacunar ischemic strokes.</p> <p>Methods</p> <p>The proteins encoded by the methylenetetrahydrofolate reductase (<it>MTHFR</it>) and glutathione S-transferase omega-1 (<it>GSTO-1</it>) genes are, through oxidative mechanisms, key participants in the cerebral response to ischemia. On the basis of these biological activities, they were selected as candidate genes for further investigation. We analyzed the C677T polymorphism in the <it>MTHFR </it>gene and the C419A polymorphism in the <it>GSTO-1 </it>gene in 128 patients with non-lacunar ischemic strokes.</p> <p>Results</p> <p>We found no significant association of either the <it>MTHFR </it>(p = 0.72) or <it>GSTO-1 </it>(p = 0.58) polymorphisms with cerebral infarct volume.</p> <p>Conclusion</p> <p>Our study shows no major gene effect of either the <it>MTHFR </it>or <it>GSTO-1 </it>genes as a modifier of ischemic stroke volume. However, given the relatively small sample size, a minor gene effect is not excluded by this investigation.</p
Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels
Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs
Contribution of Common Genetic Variants to Risk of Early-Onset Ischemic Stroke
Background and Objectives Current genome-wide association studies of ischemic stroke have focused primarily on late-onset disease. As a complement to these studies, we sought to identify the contribution of common genetic variants to risk of early-onset ischemic stroke. Methods We performed a meta-analysis of genome-wide association studies of early-onset stroke (EOS), ages 18-59 years, using individual-level data or summary statistics in 16,730 cases and 599,237 nonstroke controls obtained across 48 different studies. We further compared effect sizes at associated loci between EOS and late-onset stroke (LOS) and compared polygenic risk scores (PRS) for venous thromboembolism (VTE) between EOS and LOS. Results We observed genome-wide significant associations of EOS with 2 variants in ABO, a known stroke locus. These variants tag blood subgroups O1 and A1, and the effect sizes of both variants were significantly larger in EOS compared with LOS. The odds ratio (OR) for rs529565, tagging O1, was 0.88 (95% confidence interval [CI]: 0.85-0.91) in EOS vs 0.96 (95% CI: 0.92-1.00) in LOS, and the OR for rs635634, tagging A1, was 1.16 (1.11-1.21) for EOS vs 1.05 (0.99-1.11) in LOS; p-values for interaction = 0.001 and 0.005, respectively. Using PRSs, we observed that greater genetic risk for VTE, another prothrombotic condition, was more strongly associated with EOS compared with LOS (p = 0.008). Discussion The ABO locus, genetically predicted blood group A, and higher genetic propensity for venous thrombosis are more strongly associated with EOS than with LOS, supporting a stronger role of prothrombotic factors in EOS.Peer reviewe
Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study
ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3
7 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6
7 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
- …