3 research outputs found

    Advancing Fluid-Based Thermal Management Systems Design: Leveraging Graph Neural Networks for Graph Regression and Efficient Enumeration Reduction

    Full text link
    In this research, we developed a graph-based framework to represent various aspects of optimal thermal management system design, with the aim of rapidly and efficiently identifying optimal design candidates. Initially, the graph-based framework is utilized to generate diverse thermal management system architectures. The dynamics of these system architectures are modeled under various loading conditions, and an open-loop optimal controller is employed to determine each system's optimal performance. These modeled cases constitute the dataset, with the corresponding optimal performance values serving as the labels for the data. In the subsequent step, a Graph Neural Network (GNN) model is trained on 30% of the labeled data to predict the systems' performance, effectively addressing a regression problem. Utilizing this trained model, we estimate the performance values for the remaining 70% of the data, which serves as the test set. In the third step, the predicted performance values are employed to rank the test data, facilitating prioritized evaluation of the design scenarios. Specifically, a small subset of the test data with the highest estimated ranks undergoes evaluation via the open-loop optimal control solver. This targeted approach concentrates on evaluating higher-ranked designs identified by the GNN, replacing the exhaustive search (enumeration-based) of all design cases. The results demonstrate a significant average reduction of over 92% in the number of system dynamic modeling and optimal control analyses required to identify optimal design scenarios.Comment: 13 pages, 17 figure

    Multi-split configuration design for fluid-based thermal management systems

    Full text link
    High power density systems require efficient cooling to maintain their thermal performance. Despite this, as systems get larger and more complex, human practice and insight may not suffice to determine the desired thermal management system designs. To this end, a framework for automatic architecture exploration is presented in this article for a class of single-phase, multi-split cooling systems. For this class of systems, heat generation devices are clustered based on their spatial information, and flow-split are added only when required and at the location of heat devices. To generate different architectures, candidate architectures are represented as graphs. From these graphs, dynamic physics models are created automatically using a graph-based thermal modeling framework. Then, an optimal fluid flow distribution problem is solved by addressing temperature constraints in the presence of exogenous heat loads to achieve optimal performance. The focus in this work is on the design of general multi-split heat management systems. The architectures discussed here can be used for various applications in the domain of configuration design. The multi-split algorithm can produce configurations where splitting can occur at any of the vertices. The results presented include 3 categories of cases and are discussed in detail.Comment: 11 pages, 18 figure

    Extracting Design Knowledge from Optimization Data: Enhancing Engineering Design in Fluid Based Thermal Management Systems

    Full text link
    As mechanical systems become more complex and technological advances accelerate, the traditional reliance on heritage designs for engineering endeavors is being diminished in its effectiveness. Considering the dynamic nature of the design industry where new challenges are continually emerging, alternative sources of knowledge need to be sought to guide future design efforts. One promising avenue lies in the analysis of design optimization data, which has the potential to offer valuable insights and overcome the limitations of heritage designs. This paper presents a step toward extracting knowledge from optimization data in multi-split fluid-based thermal management systems using different classification machine learning methods, so that designers can use it to guide decisions in future design efforts. This approach offers several advantages over traditional design heritage methods, including applicability in cases where there is no design heritage and the ability to derive optimal designs. We showcase our framework through four case studies with varying levels of complexity. These studies demonstrate its effectiveness in enhancing the design of complex thermal management systems. Our results show that the knowledge extracted from the configuration design optimization data provides a good basis for more general design of complex thermal management systems. It is shown that the objective value of the estimated optimal configuration closely approximates the true optimal configuration with less than 1 percent error, achieved using basic features based on the system heat loads without involving the corresponding optimal open loop control (OLOC) features. This eliminates the need to solve the OLOC problem, leading to reduced computation costs.Comment: 13 pages, 20 figure
    corecore