25 research outputs found

    Programmable logic circuits for functional integrated smart plastic systems

    Get PDF
    In this paper, we present a functional integrated plastic system. We have fabricated arrays of organic thin-film transistors (OTFTs) and printed electronic components driving an electrophoretic ink display up to 70mm by 70mm on a single flexible transparent plastic foil. Transistor arrays were quickly and reliably configured for different logic functions by an additional process step of inkjet printing conductive silver wires and poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) resistors between transistors or between logic blocks. Among the circuit functions and features demonstrated on the arrays are a 7-stage ring oscillator, a D-type ip-flop memory element, a 2:4 demultiplexer, a programmable array logic device (PAL), and printed wires and resistors. Touch input sensors were also printed, thus only external batteries were required for a complete electronic subsystem. The PAL featured 8 inputs, 8 outputs, 32 product terms, and had 1260 p-type polymer transistors in a 3-metal process using diode-load logic. To the best of our knowledge, this is the first time that a PAL concept with organic transistors has been demonstrated, and also the first time that organic transistors have been used as the control logic for a flexible display which have both been integrated on to a single plastic substrate. The versatility afforded by the additive inkjet printing process is well suited to organic programmable logic on plastic substrates, in effect, making flexible organic electronics more flexibleRCUK, OtherThis is the final published version. It is also available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1566119914003607#

    Programmable logic circuits for functional integrated smart plastic systems

    Get PDF
    In this paper, we present a functional integrated plastic system. We have fabricated arrays of organic thin-film transistors (OTFTs) and printed electronic components driving an electrophoretic ink display up to 70 mm by 70 mm on a single flexible transparent plastic foil. Transistor arrays were quickly and reliably configured for different logic functions by an additional process step of inkjet printing conductive silver wires and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) resistors between transistors or between logic blocks. Among the circuit functions and features demonstrated on the arrays are a 7-stage ring oscillator, a D-type flip-flop memory element, a 2:4 demultiplexer, a programmable array logic device (PAL), and printed wires and resistors. Touch input sensors were also printed, thus only external batteries were required for a complete electronic subsystem. The PAL featured 8 inputs, 8 outputs, 32 product terms, and had 1260 p-type polymer transistors in a 3-metal process using diode-load logic. To the best of our knowledge, this is the first time that a PAL concept with organic transistors has been demonstrated, and also the first time that organic transistors have been used as the control logic for a flexible display which have both been integrated on to a single plastic substrate. The versatility afforded by the additive inkjet printing process is well suited to organic programmable logic on plastic substrates, in effect, making flexible organic electronics more flexible. Crown Copyright (C) 2014 Published by Elsevier B.V.X113426Ysciescopu

    Assessing the Impact of Defects on Lead-Free Perovskite-Inspired Photovoltaics via Photoinduced Current Transient Spectroscopy

    Get PDF
    Funder: Collaborative Innovation Center of Suzhou Nano Science & TechnologyFunder: Priority Academic Program Development of Jiangsu Higher Education Institutions; Id: http://dx.doi.org/10.13039/501100012246Funder: 111 Project; Id: http://dx.doi.org/10.13039/501100013314Funder: Joint International Research Laboratory of Carbonā€Based Functional Materials and DevicesThe formidable rise of lead-halide perovskite photovoltaics has energized the search for lead-free perovskite-inspired materials (PIMs) with related optoelectronic properties but free from toxicity limitations. The photovoltaic performance of PIMs closely depends on their defect tolerance. However, a comprehensive experimental characterization of their defect-level parametersā€”concentration, energy depth, and capture cross-sectionā€”has not been pursued to date, hindering the rational development of defect-tolerant PIMs. While mainstream, capacitance-based techniques for defect-level characterization have sparked controversy in lead-halide perovskite research, their use on PIMs is also problematic due to their typical near-intrinsic character. This study demonstrates on four representative PIMs (Cs3Sb2I9, Rb3Sb2I9, BiOI, and AgBiI4) for which Photoinduced Current Transient Spectroscopy (PICTS) offers a facile, widely applicable route to the defect-level characterization of PIMs embedded within solar cells. Going beyond the ambiguities of the current discussion of defect tolerance, a methodology is also presented to quantitatively assess the defect tolerance of PIMs in photovoltaics based on their experimental defect-level parameters. Finally, PICTS applied to PIM photovoltaics is revealed to be ultimately sensitive to defect-level concentrations <1Ā ppb. Therefore, this study provides a versatile platform for the defect-level characterization of PIMs and related absorbers, which can catalyze the development of green, high-performance photovoltaics.Royal Academy of Engineerin

    Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things

    No full text
    The Internet of Things (IoT) provides everyday objects and environments with ā€œintelligenceā€ and data connectivity to improve quality of life and the efficiency of a wide range of human activities. However, the ongoing exponential growth of the IoT device ecosystemā€”up to tens of billions of units to dateā€”poses a challenge regarding how to power such devices. This Progress Report discusses how energy harvesting can address this challenge. It then discusses how indoor photovoltaics (IPV) constitutes an attractive energy harvesting solution, given its deployability, reliability, and power density. For IPV to provide an eco-friendly route to powering IoT devices, it is crucial that its underlying materials and fabrication processes are low-toxicity and not harmful to the environment over the product life cycle. A range of IPV technologiesā€”both incumbent and emergingā€”developed to date is discussed, with an emphasis on their environmental sustainability. Finally, IPV based on emerging lead-free perovskite-inspired absorbers are examined, highlighting their status and prospects for low-cost, durable, and efficient energy harvesting that is not harmful to the end user and environment. By examining emerging avenues for eco-friendly IPV, timely insight is provided into promising directions toward IPV that can sustainably power the IoT revolution
    corecore