266 research outputs found

    On the High-Temperature Phase Transition of Gd5Si2Ge2

    Get PDF
    The first-order monoclinic-to-orthorhombic (β→γ) phase transition of the giant magnetocaloric material Gd5Si2Ge2 was studied using in situ high-temperature single-crystal X-ray diffraction. A special crystal mounting procedure was developed to avoid crystal contamination by oxygen or nitrogen at high temperatures. The elastic β→γ transformation occurs at 300−320 °C during heating, and it is reversible during fast and slow heating and slow cooling but irreversible during rapid cooling. Contrary to theoretical predictions, the macroscopic distribution of the Si and Ge atoms remains the same in both the orthorhombic γ-polymorph and the monoclinic β-phase. It appears that interstitial impurities may affect stability of both the monoclinic and orthorhombic phases. In the presence of small amounts of air, the β→γ transformation is complete only at 600 °C. The interslab voids, which can accommodate impurity atoms, have been located in the structure, and an effect of partially filling these voids with oxygen or nitrogen atoms on the β−γ transition is discussed

    Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    Get PDF
    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel

    Erbium-based magnetic refrigerant (regenerator) for passive cryocooler

    Get PDF
    A two stage Gifford-McMahon cryocooler having a low temperature stage for reaching approximately 10K, wherein the low temperature stage includes a passive magnetic heat regenerator selected from the group consisting of Er.sub.6 Ni.sub.2 Sn, Er.sub.6 Ni.sub.2 Pb, Er.sub.6 Ni.sub.2 (Sn.sub.0.75 Ga.sub.0.25), and Er.sub.9 Ni.sub.3 Sn comprising a mixture of Er.sub.3 Ni and Er.sub.6 Ni.sub.2 Sn in the microstructure

    Decoupling of the Magnetic and Structural Transformations in Er5Si4

    Get PDF
    Er5Si4 is a member of the R5(Si4−xGex) family of alloys, where R=rare earth metal. Many of these compounds display a strong coupling between the magnetic and crystal lattices. In the naturally layered R5(Si4−xGex) materials, inter- and intralayer interactions can be controlled by chemical and physical means; thus their physical properties can be tailored within wide limits. The Er5Si4 is unique in that the temperature dependent structural sequence is opposite that of other representatives of this family. The magnetism of Er5Si4 is reflective of its exceptional place within the series

    Making and Breaking Covalent Bonds across the Magnetic Transition in the Giant Magnetocaloric Material Gd5(Si2Ge2)

    Get PDF
    A temperature-dependent, single crystal x-ray diffraction study of the giant magnetocaloric material, Gd5(Si2Ge2), across its Curie temperature (276 K) reveals that the simultaneous orthorhombic to monoclinic transition occurs by a shear mechanism in which the (Si,Ge)−(Si,Ge) dimers that are richer in Ge increase their distances by 0.859(3) Å and lead to twinning. The structural transition changes the electronic structure, and provides an atomic-level model for the change in magnetic behavior with temperature in the Gd5(SixGe1−x)4

    Phase relationships and structural, magnetic, and thermodynamic properties of alloys in the pseudobinary Er5Si4-Er5Ge4 system

    Get PDF
    The room temperature crystal structures of Er5SixGe4−x alloys change systematically with the concentration of Ge from the orthorhombic Gd5Si4-type when x=4, to the monoclinic Gd5Si2Ge2 type when 3.5⩽x⩽3.9 and to the orthorhombic Sm5Ge4 type forx⩽3. The Curie-Weiss behavior of Er5SixGe4−x materials is consistent with the Er3+ state. The compounds order magnetically below 30 K, apparently adopting complex noncollinear magnetic structures with magnetization not reaching saturation in 50 kOe magnetic fields. In Er5Si4, the structural-only transformation from the monoclinic Gd5Si2Ge2-type to the orthorhombic Gd5Si4-type phase occurs around 218 K on heating. Intriguingly, the temperature of this polymorphic transformation is weakly dependent on magnetic fields as low as 40 kOe (dT∕dH=−0.058 K∕kOe) when the material is in the paramagnetic state nearly 200 K above its spontaneous magnetic ordering temperature. It appears that a magnetostructural transition may be induced in the 5:4 erbium silicide at ∼18 K and above by 75 kOe and higher magnetic fields. Only Er5Si4 but none of the other studied Er5SixGe4−x alloys exhibit magnetic field induced transformations, which are quite common in the closely related Gd5SixGe4−x system. The magnetocaloric effects of the Er5SixGe4−x alloys are moderate

    Preparation, crystal structure, heat capacity, magnetism, and the magnetocaloric effect of Pr5Ni1.9Si3 and PrNi

    Get PDF
    Single-phase Pr5Ni1.9Si3 and PrNi were prepared and characterized by using differential thermal analysis, single crystal, and powder x-ray diffraction. Their thermal and magnetic properties were studied by measuring heat capacity as a function of temperature in magnetic fields up to 100 kOe and magnetization as a function of magnetic field up to 50 kOe over the temperature range from 5 to 400 K. Pr5Ni1.9Si3 orders magnetically at 50 K, and it undergoes a second transition at 25 K. As inferred from the behavior of the magnetization and magnetocaloric effect (MCE), both ferromagnetic and antiferromagnetic components are present in the magnetic ground state of the material. The heat capacity and magnetocaloric effect of PrNi confirm that it orders ferromagnetically at 19 K. Both Pr5Ni1.9Si3 and PrNi exhibit moderate magnetocaloric effects. The maximum MCE for Pr5Ni1.9Si3 is 3.4 K and it is observed at 50 K for a magnetic field change from 0 to 75 kOe. The maximum MCE for PrNi is 4.2 K, which occurs at 19 K for a magnetic field change from 0 to 100 kOe

    On the edge of periodicity: Unconventional magnetism of Gd117Co56.4Sn114.3

    Get PDF
    Magnetization measurements reveal the onset of magnetic ordering at TC = 65 K followed by three additional magnetic anomalies at T1 = 47 K, T2 = 28 K, and T3 = 11 K in Gd117Co56.4Sn114.3 – a compound with a giant cubic unit cell that crystallizes in the Dy117Co56Sn112 structure type with space group Fm3¯m and lattice parameter a = 30.186 Å. The magnetic ordering temperature increases with applied magnetic field; however, the analysis of magnetic data indicates that antiferromagnetic interactions also play a role in the ground state. AC magnetic susceptibility confirms multiple magnetic anomalies and shows minor frequency dependence. The local magnetic ordering below 60 K is supported by the Mössbauer spectroscopy. A single broad anomaly is detected at T3 in the heat capacity; we suggest that magnetic domains form below this temperature. These data highlight unique features of magnetism in this and, potentially, other rare-earth intermetallics crystallizing with giant unit-cells where the exchange correlation lengths are much shorter when compared to the periodicity of the crystal lattice

    Electrical resistivity, electronic heat capacity, and electronic structure of Gd5Ge4

    Get PDF
    Temperature and dc magnetic-field dependencies of the electrical resistivity (4.3–300 K, 0–40 kOe) and heat capacity (3.5–14 K, 0–100 kOe) of polycrystalline Gd5Ge4 have been measured. The electrical resistivity of Gd5Ge4 shows a transition between the low-temperature metallic and high-temperature insulatorlike states at ∼130 K. In the low-temperature metallic state both the resistivity and electronic heat capacity of Gd5Ge4 indicate a possible presence of a narrow conduction band. Both low- and high-temperature behaviors of the electrical resistivity of Gd5Ge4 correlate with the crystallographic and magnetic phase transitions induced by temperature and/or magnetic field. Several models, which can describe the unusual behavior of the electrical resistance of Gd5Ge4 above 130 K, are discussed. Preliminary tight-binding linear muffin-tin orbital calculations show that Gd5Ge4 behaves as a metal in the low-temperature magnetically ordered state, and as a Mott-Hubbard “semiconductor” in the high-temperature magnetically disordered state
    corecore