51 research outputs found
Two Directly Imaged, Wide-orbit Giant Planets around the Young, Solar Analog TYC 8998-760-1
Even though tens of directly imaged companions have been discovered in the past decades, the number of directly confirmed multiplanet systems is still small. Dynamical analysis of these systems imposes important constraints on formation mechanisms of these wide-orbit companions. As part of the Young Suns Exoplanet Survey we report the detection of a second planetary-mass companion around the 17 Myr-old, solar-type star TYC 8998-760-1 that is located in the Lower Centaurus Crux subgroup of the Scorpius–Centaurus association. The companion has a projected physical separation of 320 au and several individual photometric measurements from 1.1 to 3.8 microns constrain a companion mass of 6 ± 1 M Jup, which is equivalent to a mass ratio of q = 0.57 ± 0.10% with respect to the primary. With the previously detected 14 ± 3 M Jup companion that is orbiting the primary at 160 au, TYC 8998-760-1 is the first directly imaged multiplanet system that is detected around a young, solar analog. We show that circular orbits are stable, but that mildly eccentric orbits for either/both components (e > 0.1) are chaotic on gigayear timescales, implying in situ formation or a very specific ejection by an unseen third companion. Due to the wide separations of the companions TYC 8998-760-1 is an excellent system for spectroscopic and photometric follow-up with space-based observatories such as the James Webb Space Telescope
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star
Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed^1, 2. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life^3. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration^4, 5. Other theories posit that planet assembly at small orbital separations may be common^6, 7, 8. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation
A rocky composition for an Earth-sized exoplanet
Planets with sizes between that of Earth (with radius R[subscript circle in cross]) and Neptune (about 4 R[subscript circle in cross]) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet’s size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet’s mass—and hence its density, which is a clue to its composition—is more difficult. Planets of size 2–4 R[subscript circle in cross] have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R[subscript circle in cross] and a mass of 1.69 ± 0.41 M[subscript circle in cross], the planet’s mean density of 5.3 ± 1.8 g cm[superscript −3] is similar to Earth’s, suggesting a composition of rock and iron.Kepler Participating Scientist Progra
Neurocytotoxic effects of iron-ions on the developing brain measured in vivo using medaka (Oryzias latipes), a vertebrate model
Purpose: Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes)
Low-mass and sub-stellar eclipsing binaries in stellar clusters
We highlight the importance of eclipsing double-line binaries in our
understanding on star formation and evolution. We review the recent discoveries
of low-mass and sub-stellar eclipsing binaries belonging to star-forming
regions, open clusters, and globular clusters identified by ground-based
surveys and space missions with high-resolution spectroscopic follow-up. These
discoveries provide benchmark systems with known distances, metallicities, and
ages to calibrate masses and radii predicted by state-of-the-art evolutionary
models to a few percent. We report their density and discuss current
limitations on the accuracy of the physical parameters. We discuss future
opportunities and highlight future guidelines to fill gaps in age and
metallicity to improve further our knowledge of low-mass stars and brown
dwarfs.Comment: 30 pages, 5 figures, no table. Review pape
- …