1,040 research outputs found
Solitonic State in Microscopic Dynamic Failures
Onset of permanent deformation in crystalline materials under a sharp
indenter tip is accompanied by nucleation and propagation of defects. By
measuring the spatio-temporal strain field nearthe indenter tip during
indentation tests, we demonstrate that the dynamic strain history at the moment
of a displacement burst carries characteristics of formation and interaction of
local excitations, or solitons. We show that dynamic propagation of multiple
solitons is followed by a short time interval where the propagating fronts can
accelerate suddenly. As a result of such abrupt local accelerations, duration
of the fast-slip phase of a failure event is shortened. Our results show that
formation and annihilation of solitons mediate the microscopic fast weakening
phase, during which extreme acceleration and collision of solitons lead to
non-Newtonian behavior and Lorentz contraction, i.e., shortening of solitons
characteristic length. The results open new horizons for understanding dynamic
material response during failure and, more generally, complexity of earthquake
sources
- …