5 research outputs found

    Paleomagnetism and Ar-40/Ar-39 geochronology of Yemeni Oligocene volcanics: Implications for timing and duration of Afro-Arabian traps and geometry of the Oligocene paleomagnetic field

    No full text
    A combined paleomagnetic and Ar-40/Ar-39 study was carried out along eight stratigraphically overlapping sections in the Oligocene Afro-Arabian flood volcanic province in Yemen (73 sites). The composite section covers the entire volcanic stratigraphy in the sampling region and represents five polarity zones that are correlated to the geomagnetic polarity time scale based on Ar-40/Ar-39 ages from this and previous studies. The resulting magnetostratigraphy is similar to that of the conjugate margin in Ethiopia. The earliest basaltic volcanism took place in a reverse polarity chron that appears to correspond to C11r, while the massive rhyolitic ignimbrite eruptions correlated to ash layers in Oligocene Indian Ocean sediment 2700 km away from the Afro-Arabian traps, appear to have taken place during magnetochron C11n. The youngest ignimbrite was emplaced during magnetochron C9n. Both 40Ar/39Ar and paleornagnetic data suggest rapid < 1 Ma eruption of the basal basalt units and punctuated eruption of the upper silicic units over a duration potentially as long as 3 Ma with interspersed eruptive hiatuses. Eruption of the basal basalts may have preceded the Oi2 cooling event. The paleornagnetic pole lambda=74.2 degrees N, phi=249.1 degrees E (A95=3.6 degrees; N=48) is supported by a positive reversal test. Paleosecular variation, estimated as the angular standard deviation of the VGP distribution 14.2 degrees+2.3 degrees/-1.7 degrees, is close to expected, suggesting that the paleornagnetic pole represents a time-averaged field. The pole is in excellent accord with the paleornagnetic poles obtained from the Ethiopian part of the Afro-Arabian province, after closure of the Red Sea. By analyzing Afro-Arabian paleomagnetic data in conjunction with contemporaneous paleomagnetic poles available from different latitudes we argue that the Oligocene paleomagnetic field was dominated by the axial dipole with insignificant non-dipole field contributions

    Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup

    Get PDF
    During Neoproterozoic Snowball Earth glaciations, the oceans gained massive amounts of alkalinity, culminating in the deposition of massive cap carbonates on deglaciation. Changes in terrestrial runoff associated with both breakup of the Rodinia supercontinent and deglaciation can explain some, but not all of the requisite changes in ocean chemistry. Submarine volcanism along shallow ridges formed during supercontinent breakup results in the formation of large volumes of glassy hyaloclastite, which readily alters to palagonite. Here we estimate fluxes of calcium, magnesium, phosphorus, silica and bicarbonate associated with these shallow-ridge processes, and argue that extensive submarine volcanism during the breakup of Rodinia made an important contribution to changes in ocean chemistry during Snowball Earth glaciations. We use Monte Carlo simulations to show that widespread hyaloclastite alteration under near-global sea-ice cover could lead to Ca2+ and Mg2+ supersaturation over the course of the glaciation that is sufficient to explain the volume of cap carbonates deposited. Furthermore, our conservative estimates of phosphorus release are sufficient to explain the observed P:Fe ratios in sedimentary iron formations from this time. This large phosphorus release may have fuelled primary productivity, which in turn would have contributed to atmospheric O2 rises that followed Snowball Earth episodes
    corecore